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Abstract

This report gives an overview of my work in quantum field theory and gauge
theory over the last year. First part of this report summarizes the machinery of renor-
malized perturbation theory for quantumfield theories. Calculations of renormalizing
Z-factors, beta functions, anomalous dimensions of the field, and anomalous dimen-
sion of mass are done for different quantum field theories — scalar field theories,
Yukawa theory, electrodynamics, and nonabelian gauge theory— to one loop order
in perturbation theory.

The second part of this report goes over modern techniques for computing tree level
scattering amplitudes in gauge theory. For computation of scattering amplitudes in
nonabelian gauge theory, in particular, spinor helicity formalism, twistor variables,
and colour ordering are introduced, and traditional Feynman rules are translated
into this new language. With these new Feynman rules, colour ordered amplitudes
are computed for QCD processes like qq → qq , qq̄ → qq̄ and most importantly,
g g → g g .

On-shell recursion relations for tree level processes are also introduced, which let us
completely bypass the business of drawing and computing Feynman diagrams, and
give us tools to completely determine higher point amplitudes in terms of lower point
amplitudes. Finally, to demonstrate the power of these methods an efficient proof of
the famous Parke–Taylor formula for maximally helicity violating (MHV) amplitudes
is constructed using BCFW recursion.
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Chapter 1

Introduction

First part of this project was dedicated to learning the quantization and renormaliza-
tion of quantum field theories, and getting used to the kinds of calculations involved
in perturbative QFT. During this phase of the project I did calculations of beta func-
tions and anomalous dimensions for different quantum field theories to one loop
order.

In the second part, I learned the spinor helicity formalism and modern techniques
for computing scattering amplitudes in nonabelian gauge theory. In particular, I
learned how to compute colour ordered tree level amplitudes of certain perturbative
QCD processes, using both traditional Feynman rules translated to the spinor helicity
language and on-shell BCFW recursion relation. Finally, I have done a proof of the
famous Parke–Taylor formula using BCFW recursion.

Loops
After a field theory has been quantized and Feynman rules been derived,
next to leading order terms in perturbation theory (the so called radiative corrections)
turn out to be ill-defined: they involve integration over an undetermined loop mo-
mentum, and this integral typically diverges in the ultraviolet limit. It is sometimes
possible to isolate and absorb these divergences by introducing an ultraviolet cutoff
and renormalizing fields and couplings so that observable quantities like scattering
amplitudes and cross sections remain finite despite the Lagrangian containing terms
that depend on the formally divergentUV cutoff. If it is possible to absorb divergences
to all orders in perturbation theory by renormalizing fields and parameters (or by
adding a finite number of new terms to the Lagrangian), the quantum field theory is
said to be renormalizable.

Renormalized fields and parameters in a renormalizable theory include a dependence
on a parameter called the renormalization scale, and requiring bare (unrenormalized)
fields and parameters to be independent of this scale gives important qualitative infor-
mation about the theory. For example, requiring the bare coupling to be independent
of the renormalization scale leads to an expression for the beta function which tells
us how the strength of interactions varies with the energy scale, or in the jargon of
quantum field theory, how the coupling runs.

In this report we start with some of the simplest quantum field theories—φ3 theory
in six spacetime dimensions andφ4 theory in four spacetime dimensions—to illustrate

1
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how divergent integrals are dealt with using dimensional regularization and how fields
and parameters are renormalized, without additional complications that multiple
interactions, fermions or gauge fields involve.

Yukawa theory is the first theory we encounter in which additional interaction terms
have to be added to make the theory renormalizable by absorbing divergences from
certain vertex functions. Complications due to multiple different interactions in
calculation of beta functions and anomalous dimensions are dealt with in detail in
this section, and the results are carried over to gauge theories. Other than the multiple
couplings, and learning to handle Dirac spinors and gamma matrices, there are no
additional calculational difficulties.

After this, we apply the techniques learned in simpler theories to compute the famous
vacuum polarization, electron self-energy and vertex correction diagrams in quantum
electrodynamics. Using the divergent part of renormalizing factors, we calculate the
QED beta function, corrections to the scaling dimension of fermion and gauge fields,
and anomalous dimension of fermion mass. We also do these calculations in scalar
electrodynamics—a theory of complex scalars coupled to the electromagnetic field.
Apart from two more interaction vertices leading to a larger number of diagrams,
scalar electrodynamics poses no additional calculational difficulties.

Finally, we compute loop diagrams, beta functions and anomalous dimensions in
nonabelian gauge theory coupled to spinors and scalars. There are many technical
issues involving gauge fixing and quantisation of gauge fields, but we do not dwell
on these in this report, instead preferring to start from a gauge fixed Lagrangian
and coupling gauge fields to matter by the gauge principle. When the gauge group is
SU(3), results of this section reproduce the famous negative beta function of quantum
chromodynamics, which indicates that QCD is asymptotically free.

Amplitudes

With traditional Feynman rules for nonabelian gauge theory, vertex terms get extremely
complicated extremely quickly, to wit: even the tree level amplitude for g g → g g
process is very difficult to compute in perturbation theory.

For massless particles, the spinor helicity formalism and twistor variables help avoid
the labour involved in simplifying expressions for amplitudes, and in conjunction
with Gervais–Neveu gauge and colour ordering, they lead to simple and compact
final expressions. But computing amplitudes from Feynman rules written in the
language of twistor variables, despite being much simpler than traditional methods,
gets cumbersome for higher point amplitudes. For example, for 5-, 6-, or 7-gluon
amplitudes, one has to compute 10, 38, and 154 Feynman diagrams respectively.

The approach of on-shell recursion relations uses the power of complex analysis to
factor higher-point on-shell amplitudes into a product of complex-shifted, lower-
point on-shell amplitudes. These methods avoid the whole process of drawing and
computing Feynman diagrams. BCFW (Britto, Cachazo, Feng, Witten) recursion
relations, in particular, provide a very efficient inductive proof of the Parke–Taylor
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formula, and also a way to construct more general higher point amplitudes using the
MHV amplitude.

In Part 2, spinor helicity methods and twistor variables are introduced, and to demon-
strate these techniques tree level amplitude for Compton scattering is computed.
Next, we deal with various four point amplitudes in nonabelian gauge theory. Colour-
ordered amplitudes forQCD processes qq→ qq , qq̄→ g g and g g → g g (and their
crossing related cousins) are computed and expressed in terms of twistor variables.
BCFW recursion is introduced in Chapter 7 and is used to compute the four point
gluon amplitude using various three point amplitudes. Finally, the BCFW recursion is
used to prove the Parke–Taylor formula by mathematical induction over the number
of external gluons.

In appendices, we list important formulae used throughout this report, and compile
Feynman rules for all theories studied in the main text for reference.
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Chapter 2

Scalar Field Theories

We start with two of the simplest quantum field theories to see the ma-
chinery of renormalized perturbation theory in action, unencumbered by additional
complications that multiple interactions, fermions and gauge fields entail. In particu-
lar, we shall see Feynman’s trick of converting a product of propagators to an integral,
and the method of dimensional regularization as a way to introduce an ultraviolet
cutoff.

Yukawa theory is the first quantum field theory we encounter in which additional
interaction terms have to be added to make it renormalizable. Multiple interactions
lead to many one loop diagrams that have to be evaluated, and also to certain compli-
cations in the computation of beta functions and anomalous dimensions. Results
derived in this section are also used for electromagnetism and nonabelian gauge theory
coupled to scalars.

Calculations forφ3 theory in this chapter have been adapted from Srednicki.

2.1 Cubic self-interaction

Scalar field theory with a φ3 self-interaction is described by a Lagrangian of the
form

L=−1
2

Zφ∂
µφ∂µφ−

1
2

ZM M 2φ2+
1
3!

Zκκφ
3+Yφ. (2.1)

By dimensional analysis, we notice that in d dimensions, the cubic self-coupling has
mass dimension of

[κ] =
1
2
(6− d ). (2.2)

Interactions in quantum field theory are the most interesting when the coupling is
dimensionless, therefore we shall studyφ3 theory in six spacetime dimensions.

The Lagrangian can be organized into free, interacting, and counterterm pieces as
follows,

L0 =−
1
2
∂ µφ∂µφ−

1
2

M 2φ2, (2.3)

L1 =
1
3!

Zκκφ
3+ Lct, (2.4)

Lct =−
1
2
(Zφ− 1)∂ µφ∂µφ−

1
2
(ZM − 1)M 2φ2+Yφ. (2.5)

7
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In what follows, we shall study one-by-one the kinds of one loop corrections that
occur with aφ3 interaction.

2.1.1 Cancelling tadpoles

For the validity of the LSZ formula, vacuum expectation value of the field is required
to be zero, 〈0|φ(x)|0〉= 0. Graphically, the vacuum expectation value equals the sum
of diagrams with a single source, with one source removed (Figure 2.1).

Figure 2.1: Tadpoles in scalarφ3 theory.

To the lowest order in κ, we have

〈0|φ(x)|0〉=
�

iY +
1
2
(iκ)

1
i
∆(0)
�
∫

d 6y
1
i
∆(x − y)+O(κ3). (2.6)

Therefore, to have 〈0|φ(x)|0〉= 0, we must choose

Y =
1
2

iκ∆(0). (2.7)

However, the integral

∆(0) =
∫

d 6k
(2π)6

1
k2+M 2− iε

, (2.8)

is unbounded. The divergence can be isolated by analytically continuing the integral
to d = 6− ε dimensions,

∆(0) = µ̃ε
∫

d d k
(2π)d

1
k2+M 2− iε

, (2.9)

where the parameter µ̃ with dimensions of mass has been introduced to keep the
dimension of∆(0) unchanged.

In the integral
∫

d d k, we can view the integral over k0 as an integral over a contour
that goes from−∞ to+∞. We can do aWick rotation k0→ i k0, so that the contour
runs from−i∞ to+i∞. As long as the contour does not pass over any poles while
making the rotation, the value of the integral remains unchanged. We can now replace
k by a Euclidean vector k̄ , given by k̄ j = k j for j = 1, . . . , d −1, and k̄d = i k0. We note
that

k2 = k̄2 = k̄2
1 + · · ·+ k̄2

d , (2.10)

and d d k = i d d k̄. As a result, we have

µ̃ε
∫

d d k
(2π)d

1
k2+M 2− iε

= iµ̃ε
∫

d d k̄
(2π)d

1

k̄2+M 2− iε
. (2.11)
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where the integral now is over a Euclidean variable, and we can use the formula

∫

d d k̄
(2π)d

(k̄2)a

(k̄2+D)b
=
Γ (b − a− d

2 )Γ (a+
d
2 )

(4π)d/2Γ (b )Γ ( d
2 )

D−(b−a−d/2) (2.12)

to evaluate it.

We use
Γ (−n+ x) =

(−1)n

n!

�

1
x
− γ +

n
∑

k=1

k−1+O(x)
�

, (2.13)

and
Aε/2 = 1+

ε

2
lnA+O(ε2), (2.14)

to expand in powers of ε

µ̃ε
∫

d d k̄
(2π)d

1

k̄2+M 2
=

1
(4π)3

Γ
�

−2+
ε

2

�

�

4πµ̃2

M 2

�ε/2

=
1

2(4π)3

�

2
ε
− γ + 3

2
+O(ε)
�

�

1+
ε

2
ln

4πµ̃2

M 2
+O(ε2)
�

=
1

2(4π)3

�

2
ε
− γ + 3

2
+ ln

4πµ̃2

M 2
+O(ε)
�

, (2.15)

so that
Y =−1

4
κ

(4π)3

�

2
ε
− γ + 3

2
+ ln

4πµ̃2

M 2

�

+O(κ2), (2.16)

which, in the ε→ 0 limit, is formally infinite.

2.1.2 Corrections to the propagator

The exact scalar propagator in the Lehmann-Källén form is

∆(k2) =
1

k2+M 2− iε
+
∫ ∞

0
d sρ(s)

1
k2+ s − iε

, (2.17)

where ρ(s)≥ 0 is called the spectral density. From the above, it is clear that the scalar
propagator has a pole with residue 1 at k2 =−M 2.

At one loop, the propagator receives the corrections from diagrams in Figure 2.2. We
have

1
i
∆(k2) =

1
i
∆(k2)+

1
i
∆(k2)
�

iΠ(k2)
�1

i
∆(k2)+ · · · , (2.18)

where

iΠ(k2) =
1
2
(iκ)2
�

1
i

�2∫ d d l
(2π)d

∆(l 2)∆((k + l )2)− i
�

Ak2+BM 2�+O(κ4), (2.19)

where A= Zφ− 1 and B = ZM − 1.
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k

l

k + l

k k k

Figure 2.2: One loop correction to the scalar propagator inφ3 theory.

If iΠ(k2) is defined to be the sumof all 1PIdiagramswith two external lines ofmomen-
tum k , the exact propagator∆(k2) can bewritten as a geometric series in iΠ(k2),

1
i
∆(k2) =

1
i
∆(k2)+

1
i
∆(k2)
�

iΠ(k2)
�1

i
∆(k2)

+
1
i
∆(k2)
�

iΠ(k2)
�1

i
∆(k2)
�

iΠ(k2)
�1

i
∆(k2)+ · · · (2.20)

so that
∆(k2) =

1
∆(k2)−1−Π(k2)

=
1

k2+M 2− iε−Π(k2)
. (2.21)

The pole of residue 1 of∆(k2) at k2 =−M 2 means that Π(k2)must satisfy the follow-
ing

Π(−M 2) = 0 and Π′(−M 2) = 0. (2.22)

To simplify the integrand on the RHS of (2.19), we use Feynman’s trick

1
A1 . . .An

=
∫

d Fn(x1A1+ · · · xnAn)
−n , (2.23)

where
∫

d Fn = (n− 1)!
∫ 1

0
d x1 . . . d xnδ(x1+ · · ·+ xn − 1), (2.24)

so that
∫

d Fn = 1.

∆(l 2)∆((k + l )2) =
1

l 2+M 2

1
(k + l )2+M 2

=
∫ 1

0
d x
�

(1− x)(l 2+M 2)+ x((k + l )2+M 2)
�−2

=
∫

d x[(l + xk)2+ x(1− x)k2+M 2]−2

=
∫

d x[q2+D]−2, (2.25)

with q = l + xk and D = x(1− x)k2+M 2. We have
∫

d d l
(2π)d

∆(l 2)∆((k + l )2) =
∫

d x
∫

d d q
(2π)d

1
(q2+D)2

. (2.26)
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After Wick rotating the q0 contour and introducing the fake parameter µ̃ to keep the
dimensions of the integral unchanged, we can use (2.12) to do the integral,

µ̃ε
∫

d d q
(2π)d

1
(q2+D)2

= iµ̃ε
∫

d d q̄
(2π)d

1
(q̄2+D)2

=
i
(4π)3

Γ
�

−1+
ε

2

�

�

4πµ̃2

D

�ε/2

D

=− i
(4π)3

�

2
ε
− γ + 1+ ln

4πµ̃2

D
+O(ε)
�

D

=− i
(4π)3

�

2
ε
+ 1+ ln

4πµ̃
eγD

+O(ε)
�

D

=− i
(4π)3

�

2
ε
+ 1+ ln

4πµ̃
eγD

+O(ε)
�

D

=− i
(4π)3

�

2
ε
+ 1+ ln

M 2

D
+ 2 ln

µ

M
+O(ε)
�

D , (2.27)

where we have defined µ2 = e−γ4πµ̃2, and

Π(k2) =
α

2

∫

d xD ln
D
M 2
−α
�

1
ε
+ 1+ ln

µ

M

��

1
6

k2+M 2
�

− (Ak2+BM 2)+O(α2)

=
α

2

∫

d x ln
D
M 2
− k2
�

A+
α

6

�

1
ε
+

1
2
+ ln

µ

M

��

−M 2
�

B +α
�

1
ε
+

1
2
+ ln

µ

M

��

where we have defined α= κ2/(4π)3. We choose A and B of the form

A=−α
6

�

1
ε
+

1
2
+ ln

µ

M
+KA

�

, B =−α
�

1
ε
+

1
2
+ ln

µ

M
+KB

�

, (2.28)

so that the Z factors are

Zφ = 1− α
6

�

1
ε
+

1
2
+ ln

µ

M
+KA

�

+O(α2), (2.29)

ZM = 1−α
�

1
ε
+

1
2
+ ln

µ

M
+KB

�

+O(α2), (2.30)

where KA and KB are numerical factors set by requiringΠ(−M 2) = 0 and Π′(−M 2) =
0.

2.1.3 Vertex corrections

At one loop, the φ3 vertex receives the following correction, due to the diagram in
Figure 2.3,

iV3(k1, k2, k3) = iZκκ+(iκ)
3
�

1
i

�3∫ d 6 l
(2π)6

∆(l 2)∆((k1+l )2)∆((k1+k2+l )2), (2.31)

where iZκκ is due to the original vertex, and in writing the correction due to the loop
diagram, we have taken Zκ = 1+O(κ) (atleast), so that the vertices contribute iκ.
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Corrections to vertices of this diagram are lumped into higher order corrections to
the vertex function V3.

k1

l

k3

k1+ l

k1+ k2+ l
k2

Figure 2.3: One loop correction to theφ3 vertex.

In computing the integral on the RHS of (2.31), we use Feynman’s trick (2.23)

∆(l 2)∆((k1+ l )2)∆((k1+ k2+ l )2)

=
1

l 2+M 2

1
(k1+ l )2+M 2

1
(k1+ k2+ l )2+M 2

=
∫

d F3
�

x1(l
2+M 2)+ x2((k1+ l )2+M 2)+ x3((k1+ k2+ l )2+M 2)

�

=
∫

d F3
�

(l − x1k1+ x3k2)
2+ x2x1k2

1 + x2x3k2
2 + x1x3k2

3 +M 2�−3

=
∫

d F3
�

q2+D
�−3, (2.32)

where q = l − x1k1+ x3k2 and D = x2x1k2
1 + x2x3k2

2 + x1x3k2
3 +M 2. With d 6 l = d 6q ,

we write the integral as
∫

d 6 l
(2π)6

∆(l 2)∆((k1+ l )2)∆((k1+ k2+ l )2) =
∫

d F3

∫

d 6q
(2π)6

1
(q2+D)3

(2.33)

We see that this integral diverges. As before, we can isolate the divergence by analytically
continuing the integral to d = 6−ε dimensions, and then taking the ε→ 0 limit.

After a Wick rotation, we have
∫

d d q
(2π)d

1
(q2+D)3

= iµ̃ε
∫

d d q̄
(2π)d

1
(q̄2+D)3

, (2.34)

where µ̃ is a parameter with dimensions of mass to keep the dimensions of the integral
unchanged in d dimensions. The identity (2.12) can be used to do the integral over
q̄ .
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V3/κ= Zκ+κ
2µ̃ε
∫

d F3

∫

d d q̄
(2π)d

1
(q̄2+D)3

= Zκ+
1
2
κ2

(4π)3

∫

d F3 Γ
�ε

2

�

�

4πµ̃2

D

�ε/2

= Zκ+
1
2
α
∫

d F3

�

2
ε
− γ +O(ε)
�

�

1+
ε

2
ln

4πµ̃2

D
+O(ε2)
�

= Zκ+
1
2
α

�

2
ε
+
∫

d F3 ln
4πµ̃2

eγD
+O(ε)
�

, (2.35)

where we have defined α = κ2/(4π)3, and used
∫

d F3 = 1, and (2.13). If we define
µ2 = 4πe−γ µ̃2 and set Zκ = 1+C , we have

V3/κ= 1+C +α
�

1
ε
+ ln

µ

m

�

− 1
2
α
∫

d F3 ln
D
m2
+O(α2). (2.36)

We can absorb the divergent 1/ε and the unphysical constant µ into Zκ by requir-
ing

C =−α
�

1
ε
+ ln

µ

M
+KC

�

, (2.37)

where KC is some numerical constant, so that

Zκ = 1−α
�

1
ε
+ ln

µ

M
+KC

�

+O(α2), (2.38)

where KC is set by V3(0,0,0) = κ.

2.1.4 Beta function

On comparing the Lagrangian with renormalized fields and parameters (in 6 − ε
dimensions),

L=−1
2

Zφ∂
µφ∂µφ−

1
2

ZM M 2φ2+
1
3!

Zκκµ̃
ε/2φ3+Yφ, (2.39)

and the Lagrangian with bare fields and parameters,

L=−1
2
∂ µφ0∂µφ0−

1
2

M 2
0φ

2
0+

1
3!
κ0φ

3
0+Y0φ0, (2.40)

we have the following relations

φ0 = Z1/2
φ
φ (2.41)

M0 = Z−1/2
φ

Z1/2
M M (2.42)

κ0 = Z−3/2
φ

Zκµ̃
ε/2κ (2.43)

Y0 = Z−1/2
φ

Y. (2.44)
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For α= κ2/(4π)3, we have
α0 = Z−3

φ
Z2
κµ̃

εα. (2.45)

We have computed the Z factors to one loop,

Zφ = 1− α
6ε
+O(α2), (2.46)

ZM = 1− α
ε
+O(α2), (2.47)

Zκ = 1− α
ε
+O(α2). (2.48)

To proceed with the calculation of the beta function, we define

K(α,ε) = ln
�

Z−3
φ

Z2
κ

�

, (2.49)

and note that, in general,

K(α,ε) =
∞
∑

n=1

Kn(α)
εn

. (2.50)

With the form of Z factors as above, we have

K(α,ε) = ln
�

�

1− α
6

1
ε

�−3�

1−α1
ε

�2�

= ln
��

1+
α

2
1
ε

��

1− 2α
1
ε

��

= ln
�

1− 3α
2

1
ε
+ · · ·
�

=
�

−3α
2
+O(α2)
�

1
ε
+O(ε−2), (2.51)

so that K1(α) =−3α/2+O(α2).

On physical grounds, the bare fields and parameters must be independent of the fake
parameter µ. Therefore, from α0 = Z−3

φ
Z2
κµ̃

εα, we have

0=
d lnα0

d lnµ

=
d ln
�

Z−3
φ

Z2
κ

�

d lnµ
+

d lnα
d lnµ

+ ε

=
∂ K(α,ε)
∂ α

dα
d lnµ

+
1
α

dα
d lnµ

+ ε

=
�

1
α
+
∞
∑

n=1

K ′n(α)
εn

�

dα
d lnµ

+ ε, (2.52)

so that
dα

d lnµ
=−αε
�

1+
∞
∑

n=0

αK ′n(α)
εn

�−1

. (2.53)
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In a renormalizable theory, the left hand side of the above equation should be finite,
and therefore, powers of 1/εon the right hand sidemust cancel. We should have,

dα
d lnµ

=−αε+β(α). (2.54)

Comparing Equations (15) and (16), gives

β(α) = α2K ′1(α) =−
3α2

2
+O(α3). (2.55)

2.1.5 Anomalous dimension of mass

Anomalous dimension of mass is defined as

γM (α) =
1
M

d M
d lnµ

. (2.56)

Proceeding as before, we define A(α,ε) = ln
�

Z−1/2
φ

Z1/2
M

�

, and note that

A(α,ε) =
∞
∑

n=1

An(α)
εn

. (2.57)

With the Z factors as above,

ln
�

Z−1/2
φ

Z1/2
M

�

= ln
�

�

1− α
6

1
ε

�−1/2�

1−α1
ε

�1/2�

= ln
��

1+
α

12
1
ε

��

1− α
2

1
ε

��

= ln
�

1− 5α
12

1
ε

�

=
�

−5α
12
+O(α2)
�1
ε
+O(ε−2), (2.58)

so that A1 =−5α/12+O(α2).

The bare parameter M0 must be independent of the fake parameter µ. Therefore,
from M0 = Z−1/2

φ
Z1/2

M M , we have

0=
d ln M0

d lnµ

=
d ln
�

Z−1/2
φ

Z1/2
M

�

d lnµ
+

d ln M
d lnµ

=
∂ A(α,ε)
∂ α

dα
d lnµ

+
1
M

d M
d lnµ

. (2.59)



16

γM (α) =−
∂ A(α,ε)
∂ lnµ

dα
d lnµ

=
�

A′1(α)
ε
+

A′2(α)
ε2
+ · · ·
�

(εα−β(α))

= αA′1(α) + powers of 1/ε. (2.60)

For a renormalizable theory, γM should be finite and therefore the powers of 1/ε on
the right hand side must cancel. Finally, we have

γM (α) =−
5α
12
+O(α2). (2.61)

2.1.6 Anomalous dimension of the field

Anomalous dimension of the field is defined as

γφ(α) =
1
2

d lnZφ
d lnµ

. (2.62)

Using the form of Zφ above,

lnZφ = ln
�

1− α
6ε
+ · · ·
�

=− α
6ε
+O(α2). (2.63)

And therefore,

γφ(α) =
1
2

∂ lnZφ
∂ α

dα
d lnµ

=
1
2

�

− 1
6ε
+ · · ·
�

(−εα+β(α))

=
α

12
+ powers of 1/ε. (2.64)

In a renormalizable, theory, γφ should be finite and therefore the powers of 1/ε on
the right hand side must cancel. Finally,

γφ(α) =
α

12
+O(α2). (2.65)

2.2 Quartic interaction

Scalar field theory with aφ4 self-interaction is described by the Lagrangian

L=−1
2

Zφ∂
µφ∂µφ−

1
2

ZM M 2φ2− 1
4!

Zλλφ
4. (2.66)

We notice that in d dimensions, themass dimension of the coupling is [λ] = 4−d , and
is therefore dimensionless in d = 4 spacetime dimensions. Hence, the loop integrals
in this section will be over four dimensions.
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As before the Lagrangian can be organized into free, interacting and counterterm
pieces,

L0 =−
1
2
∂ µφ∂µφ−

1
2

M 2φ2, (2.67)

L1 =−
1
4!

Zλλφ
4+ Lct, (2.68)

Lct =−(Zφ− 1)
1
2
∂ µφ∂µφ− (ZM − 1)

1
2

M 2φ2. (2.69)

For the quartic interaction Zλλφ
4, there are no contributions to the vacuum expecta-

tion value of the field, 〈0|φ(x)|0〉= 0, because there are no connected diagrams with a
single source. Therefore, there is no need to add a linear term to cancel tadpoles.

2.2.1 Corrections to the propagator

At the lowest order iΠ(k2) receives corrections from diagrams of Figure 2.4,

iΠφ loop =
1
2
(−iλ)
�

1
i

�
∫

d 4 l
(2π)4

∆(l 2). (2.70)

k

l

k k k

Figure 2.4: One loop correction to the scalar propagator inφ4 theory.

To deal with the diverging integral above, analytically continue the integral to d = 4−ε
dimensions and do aWick rotation

Π(k2)φ loop =−
1
2
λµ̃ε
∫

d d l̄
(2π)d

1

l̄ 2+M 2

=−1
2

λ

(4π)2
Γ
�

−1+
ε

2

�

�

4πµ̃2

M 2

�ε/2

M 2

=
1
2

λ

(4π)2

�

2
ε
+ 1+ ln

4πµ̃2

M 2

�

M 2

=
λM 2

(4π)2

�

1
ε
+

1
2
− ln

M
µ

�

, (2.71)

where µ2 = e−γ4πµ̃2. Next, there are the counterterm contributions,

Π(k2)ct =−(Zφ− 1)k2− (ZM − 1)M 2. (2.72)

Total contribution to Π(k2) at one loop,

Π(k2) =
λM 2

(4π)2

�

1
ε
+

1
2
− ln

M 2

µ2

�

− (Zφ− 1)k2− (ZM − 1)M 2. (2.73)
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We choose Z factors such that

Zφ = 1+KA+O(λ2), (2.74)

ZM = 1+
λ

(4π)2

�

1
ε
+

1
2
− M 2

µ2
+KB

�

+O(λ2). (2.75)

KA andKB are numerical factors set by requiringΠ(−M 2) = 0 andΠ′(−M 2) = 0.

2.2.2 Vertex corrections

There are no three point vertices in φ4 theory. The four point vertex receives the
following correction at one loop due to the diagrams in Figure 2.5,

iV4(k1, k2, k3, k4) =−iZλλ+
3
2
(−iλ)2
�

1
i

�2∫ d 4 l
(2π)4

∆(l 2)∆((l + k1+ k2)
2). (2.76)

k1

k1+ k2+ l

l

k3k2
k4

+
k1

k1+ k3+ l

l

k2k3
k4

+
k1

k1+ k4+ l

l

k3k4
k2

Figure 2.5: One loop corrections to theφ4 vertex.

The integral above diverges. We use the usual bag of tricks.
∫

d 4 l
(2π)4

∆(l 2)∆((l + k1+ k2)
2)→ µ̃ε
∫

d d l
(2π)d

∆(l 2)∆((l + k1+ k2)
2) (2.77)

∆(l 2)∆((l + k1+ k2)
2) =
∫

d x
1

(q2+D)2
, (2.78)

where q = l + x(k1+ k2) and D = x(1− x)(k1+ k2)
2+M 2.

µ̃ε
∫

d d l
(2π)d

∆(l 2)∆((l + k1+ k2)
2)→ iµ̃ε
∫

d d q̄
(2π)d

1
(q̄2+D)2

=
i
(4π)2

Γ
�ε

2

�

�

4πµ̃2

D

�ε/2

=
2i
(4π)2

�

1
ε
− ln

D
M 2
+ ln

µ

M

�

, (2.79)

where µ2 = e−γ4πµ̃2.

V4/λ=−Zλ+
3λ

16π2

�

−
∫

d x ln
D
M 2
+

1
ε
+ ln

µ

M

�

, (2.80)

and
Zλ = 1+

3λ
16π2

�

1
ε
+ ln

µ

M
+KC

�

, (2.81)
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where KC is a numerical constant set by V4(0,0,0,0) =−λ.

2.2.3 Beta function

As before, we compare the Lagrangian with renormalized fields and parameters,

L=−1
2

Zφ∂
µφ∂µφ−

1
2

ZM M 2φ2+
1
4!

Zλλµ̃
εφ4, (2.82)

and the Lagrangian with bare fields and parameters,

L=−1
2
∂ µφ0∂µφ0−

1
2

M 2
0φ

2
0+

1
4!
λ0φ

4
0, (2.83)

for the following relations

φ0 = Z1/2
φ
φ (2.84)

M0 = Z−1/2
φ

Z1/2
M M (2.85)

λ0 = Z−2
φ

Zλµ̃
ελ. (2.86)

Computed Z factors to one loop are

Zφ = 1+O(λ2) (2.87)

ZM = 1+
λ

16π2

1
ε
+O(λ2) (2.88)

Zλ = 1+
3λ

16π2

1
ε
+O(λ2). (2.89)

As before, we define L(λ,ε) = lnZ−2
φ

Zλ and note that

L(λ,ε) =
∞
∑

n=1

Ln(λ)
εn

. (2.90)

Using the form of Z factors above,

lnZ−2
φ

Zλ = ln
�

1+
3λ

16π2

1
ε

�

=
3λ

16π2

1
ε
+O(λ2), (2.91)

so that L1(λ) = 3λ/16π2+O(λ2).

Results of the previous section hold with α↔ λ and K↔ L:

dλ
d lnµ

=−λε+β(λ), (2.92)

withβ(λ) = λ2L′1(λ) so that

β(λ) =
3λ2

16π2
+O(λ3). (2.93)
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2.2.4 Anomalous dimension of mass

DefineA(λ,ε) = lnZ−1/2
φ

Z1/2
M =
∑∞

n=1 ε
−nAn(λ), andusing theZ factors as above,

ln
�

Z−1/2
φ

Z1/2
M

�

= ln

�

�

1+
λ

16π2

1
ε

�1/2
�

=
λ

32π2

1
ε
+O(λ2), (2.94)

so that A1(λ) = λ/32π2. Analysis of the previous section holds, and we have

γM (λ) = λA′1(λ) =
λ

32π2
+O(λ2). (2.95)

2.2.5 Anomalous dimension of the field

Anomalous dimension of the field is defined as

γφ(λ) =
1
2

d lnZφ
d lnµ

. (2.96)

As Zφ = 1+O(λ2), we have lnZφ =O(λ2) and therefore

γφ(λ) =
1
2

∂ lnZφ
∂ λ

dλ
d lnµ

. (2.97)

Both ∂ lnZφ/∂ λ and dλ/d lnµ are O(λ), therefore γφ(λ) =O(λ2).

2.3 Yukawa Theory

Yukawa interaction in four spacetime dimensions is

LYukawa = gφψ̄ψ. (2.98)

Notice that the Yukawa coupling g is dimensionless in four spacetime dimensions.
However, an interaction of this kind will lead to diverging three-point and four-point
scalar vertices. To absorb these divergences, we must introduce new couplings cubic
and quartic in the scalar field φ. We also need a counterterm linear in φ to cancel
nonvanishing tadpoles.

Renormalized Lagrangian for Yukawa theory in four spacetime dimensions is

L0 = iψ̄6∂ ψ−mψ̄ψ− 1
2
∂ µφ∂µφ−

1
2

M 2φ2 (2.99)

L1 = Zg gφψ̄ψ+
1
3!

Zκκφ
3− 1

4!
Zλλφ

4+ Lct (2.100)

Lct = (Zψ− 1)iψ̄6∂ ψ− (Zm − 1)mψ̄ψ

− 1
2
(Zφ− 1)∂ µφ∂µφ−

1
2
(ZM − 1)M 2φ2+Yφ. (2.101)
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2.3.1 Cancelling tadpoles

Validity of the LSZ formula requires vacuum expectation values of the fields φ(x) and
ψ(x) be zero. While the Yukawa interaction does not result in any tadpoles involving a
fermion source, there are scalar tadpoles that need to be cancelled by the counterterm
Yφ (Figure 2.6).

Figure 2.6: Scalar tadpoles in Yukawa theory.

We have

〈0|φ(x)|0〉=
�

1
2
(iκ)
�

1
i

�

∆(0)+ (−1)(i g )
�

1
i

�

Tr S(0)+ iY
�
∫

d 4y
1
i
∆(x − y),

(2.102)
where S(x) is the (position space) free fermionpropagator. To cancel the tadpoles

iY =−1
2
κ∆(0)+ g Tr S(0), (2.103)

where
∆(0) =
∫

d 4k
(2π)4

1
k2+M 2− iδ

, (2.104)

Tr S(0) = 4m
∫

d 4k
(2π)4

1
k2+m2− iδ

. (2.105)

We evaluate the integrals in the (now) standard way,

µ̃ε
∫

d d q
(2π)d

1
q2+D

=
i D

16π2

�

2
ε
+ 1+ ln

µ2

D
+O(ε)
�

, (2.106)

where d = 4− ε and µ2 = e−γ4πµ̃2. Putting everything together

Y =
�

κM 2

16π2
−

g m3

2π2

��

1
ε
+

1
2
− ln

M
µ

�

+higher order terms, (2.107)

which diverges in the ε→ 0 limit.

2.3.2 Corrections to the scalar propagator

At one loop level, iΠ(k2) receives contributions from diagrams in Figure 2.7.

k
k + l

l

k k

l

k k

l

k + l
k k k

Figure 2.7: One loop corrections to the scalar propagator in Yukawa theory.
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iΠφ3 loop(k
2) =

1
2
(iκ)2
�

1
i

�2∫ d 4 l
(2π)4

∆(l 2)∆((k + l )2) (2.108)

We know
∆(l 2)∆((k + l )2) =

∫

d x
1

(q2+D)2
, (2.109)

where q = l + xk and D = x(1− x)k2+M 2, and

µ̃ε
∫

d d q̄
(2π)d

1
(q̄2+D)2

=
1

16π2

�

2
ε
− ln

D
µ2

�

. (2.110)

Π(k2)φ3 loop(k
2) =

1
2
µ̃εκ2
∫

d x
∫

d d q̄
(2π)4

1
(q̄2+D)2

=
κ2

2(16π2)

∫

d x
�

1
ε
− ln

D
M 2
− 2 ln

M
µ

�

=
κ2

16π2

�

1
ε
− ln

M
µ
− 1

2

∫

d x ln
D
M 2

�

(2.111)

Diagram with theφ4 loop is identical to what was calculated in pureφ4 theory,

Π(k2)φ4 loop(k
2) =

λ

16π2

�

1
ε
+

1
2
− ln

M
µ

�

M 2 (2.112)

Finally, there is the diagram with a fermion loop,

iΠψ loop(k
2) = (−1)(i g )2
�

1
i

�2∫ d 4 l
(2π)4

Tr [S(6 l )S(6k + 6 l )]. (2.113)

With
S(6k) =

−6k +m
k2+m2− iδ

, (2.114)

the numerator of the integrand can be evaluated separately

Tr[(−6 l +m)(−6k −6 l +m)] =Tr
�

−l (l + k)+m2�= 4N , (2.115)

where N =−l (l + k)+m2. As before, we simplify the denominator

1
l 2+m2

1
(k + l )2+m2

=
∫

d x
1

(q2+D)2
, (2.116)

where q = l + xk and D = x(1− x)k2+m2. In terms of q , we have

N =−q2+D + terms linear in q . (2.117)
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After Wick rotating and analytically continuing the integral to d = 4− ε dimen-
sions,

Πψ loop(k
2) =−4g 2µ̃ε
∫

d x
∫

d d q̄
(2π)d

−q̄2+D
(q̄2+D)2

=−
g 2

4π2

�

1
ε
+

1
6

�

k2−
3g 2

2π2

�

1
ε
+

1
6

�

m2+
g 2

4π2

∫

d xD ln
D
µ2

. (2.118)

Finally, there are the counterterms

Πct(k
2) =−(Zφ− 1)k2+(ZM − 1)M 2. (2.119)

Finiteness of Π(k2) requires

Zφ = 1−
g 2

4π2

�

1
ε
+finite
�

, (2.120)

ZM = 1+
�

κ2

16π2M 2
+

λ

16π2
−

3g 2m2

2π2M 2

�

�

1
ε
+finite
�

. (2.121)

2.3.3 Corrections to the fermion propagator

Lehmann-Källén form of the fermion propagator,

S(6k) =
−6k +m

k2+m2− iδ
+
∫ ∞

0
d s
−6kρ1(s)+

p
sρ2(s)

k2+ s − iδ
, (2.122)

where ρ1(s),ρ2(s) ≥ 0 are spectral densities, shows that the exact propagator has a
simple pole of residue 1 at 6k =−m.

If we define iΣ(6k) to be the sum of all 1PI diagrams with two external fermion lines
carryingmomentum k , the exact propagator can bewritten as a geometric series,

1
i
S(6k) = 1

i
S(6k)+ 1

i
S(6k)[iΣ(6k)]1

i
S(6k)+ 1

i
S(6k)[iΣ(6k)]1

i
S(6k)[iΣ(6k)]1

i
S(6k)+ · · ·

= S(6k)[1−Σ(6k)S(6k)]−1. (2.123)

Using S(6k)−1 = 6k +m, we have the inverse of the exact propagator,

S(6k)−1 = 6k +m− iδ −Σ(6k). (2.124)

As before, the pole at 6k =−m implies

Σ(−m) = 0 and Σ′(−m) = 0. (2.125)

At one loop, the only correction to the fermion propagator comes from the diagrams
in Figure 2.8,

iΣloop(6k) = (i g )2
�

1
i

�2∫ d 4 l
(2π)4

∆(l 2)S(6k + 6 l ). (2.126)
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Numerator of the integrand is N =−6k −6 l +m. The denominator can be simplified
to

1
l 2+M 2

1
(l + k)2+m2

=
∫

d x
1

(q2+D)2
, (2.127)

where q = l+xk and D = x(1−x)k2+m2+x(M 2−m2). In terms of q , the numerator
becomes N =−6q − (1− x)6k +m.

k

k + l

l

k k k

Figure 2.8: One loop corrections to the fermion propagator in Yukawa theory.

Putting all of it together, we have

Σloop(6k) = g 2
∫

d xN
∫

d d q̄
(2π)d

µ̃ε

(q̄2+D)2

=
g 2

16π2

∫

d xN
�

2
ε
− ln

D
µ

�

=
g 2

16π2
(−6k + 2m)

1
ε
−

g 2

16π2

∫

d xN ln
D
µ2

. (2.128)

Finally, there are the counterterm contributions

Σct(6k) =−(Zψ− 1)6k − (Zm − 1)m. (2.129)

Finiteness of Σ(6k) requires

Zψ = 1−
g 2

16π2

�

1
ε
+finite
�

and Zm = 1+
g 2

8π2

�

1
ε
+finite
�

. (2.130)

2.3.4 Corrections to the Yukawa vertex

Contributions to theYukawavertex at one loop come fromdiagrams inFigure 2.9,

iVY (k1, k2) = iZg g +(i g )3
�

1
i

�3∫ d 4 l
(2π)4

∆(l 2)S( 6k2+ 6 l )S( 6k1+ 6 l ) (2.131)

+(i g )2(iκ)
�

1
i

�3∫ d 4 l
(2π)4

S(6 l )∆((l − k1)
2)∆((k2− l )2). (2.132)

Note that the second integral does not diverge, and therefore will not contribute to
the diverging part of Zg . We only need to do the first integral.

We have

g 3
∫

d 4 l
(2π)4

∆(l 2)S( 6k2+6 l )S( 6k1+6 l )→ g 3µ̃ε
∫

d d l
(2π)d

(−6k1−6 l +m)(−6k2−6 l +m)
(l 2+M 2)((k1+ l )2+m2)((k2+ l )2+m2)

.
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k1

k1+ lk2+ l

k2
l

p

k1
lk2

l − k1k2− l

p

Figure 2.9: One loop corrections to the Yukawa vertex.

The denominator can be simplified,

(−6k1−6 l +m)(−6k2−6 l +m)
(l 2+M 2)((k1+ l )2+m2)((k2+ l )2+m2)

=
∫

d F3
1

(q2+D)3
, (2.133)

with q = l+x1k1+x2k2 andD = x1(1−x1)k1+x2(1−x2)k2−2x1x2k1k2+x3(M
2−m2).

In terms of q the numerator becomes

N =−q2+(x1 6k1+(x2− 1) 6k2+m)((x1− 1) 6k1+ x2 6k2+m)+ terms linear in q

=−q2+ Ñ , (2.134)

After Wick rotation we have

i g 3µ̃ε
∫

d F3

∫

d d q̄
(2π)d

−q̄2+ Ñ
(q̄2+D)3

=
i g 3

8π2

�

−1
ε
+

1
4
+

1
2

∫

d F3 ln
D
µ2
+

1
4

∫

d F3
Ñ
D

�

, (2.135)

using

µ̃ε
∫

d d q̄
(2π)d

q̄2

(q̄2+D)3
=

1
16π2

�

2
ε
− 1

2
− ln

D
µ2
+O(ε)
�

, (2.136)

and
µ̃ε
∫

d d q̄
(2π)d

1
(q̄2+D)3

=
1

32π2D
+O(ε). (2.137)

Finally,

VY (k1, k2)/g = Zg −
g 2

8π2

�

1
ε
+finite
�

, (2.138)

and we can absorb the divergence in Zg to have

Zg = 1+
g 2

8π2

�

1
ε
+finite
�

. (2.139)
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2.3.5 Corrections to the three point scalar vertex

At one loop the three point scalar vertex receives corrections from diagrams in Fig-
ure 2.10.

iV3(k1, k2, k3) = iZκκ+(iκ)
3
�

1
i

�3∫ d 4 l
(2π)4

∆(l 2)∆((k1+ l )2)∆((k1+ k2+ l )2)

+ 2(−1)(i g )3
�

1
i

�3∫ d 4 l
(2π)4

Tr[S(6 l )S( 6k1+ 6 l )S( 6k1+ 6k2+ 6 l )]

+
3
2
(−iλ)(iκ)
�

1
i

�2∫ d 4 l
(2π)4

∆(l 2)∆((k2+ l )2) (2.140)

Contribution from the first diagram is finite, and does not contribute to the diverging
part of Zκ.

k1+ l k1+ k2+ l

l
k1

k2

k3

k1+ l k1+ k2+ l

l
k1

k2

k3

k1
k3

k2+ l

l

k2 + 2 inequivalent permutations

Figure 2.10: One loop corrections to the three point scalar vertex in Yukawa theory.

Let’s first calculate the diagram with a fermion loop. Divergent contribution comes
from the part of the numerator quadratic in l . We have

N ∼Tr
�

(−6 l +m)3
�

=−12ml 2+ terms independent of l . (2.141)

The relevant part of the integral is

24i m g 3
∫

d F3

∫

d d l̄
(2π)d

µ̃ε l̄ 2

( l̄ 2+D)3
=

24i m g 3

16π2

�

2
ε
+finite
�

=
3i m g 3

π2

�

1
ε
+finite
�

(2.142)

Next, we calculate the diagram with aφ3 vertex and aφ4 vertex.

−3iκλ
2

∫

d x
∫

d d q̄
(2π)d

µ̃ε

(q̄2+D)2
=−3iκλ

32π2

�

2
ε
−
∫

d x ln
D
µ2

�

. (2.143)
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We put both these pieces together,

V3/κ= Zκ−
�

3λ
16π2
−

3m g 3

π2κ

�

�

1
ε
+finite
�

, (2.144)

so that
Zκ = 1+
�

3λ
16π2
−

3m g 3

π2κ

�

�

1
ε
+finite
�

. (2.145)

2.3.6 Corrections to the four point scalar vertex

At one loop, the four point scalar vertex receives corrections from diagrams of Fig-
ure 2.11.

iV4(k1, k2, k3, k4) =− iZλλ

+
3
2
(−iλ)2
�

1
i

�2∫ d 4 l
(2π)4

∆(l 2)∆((l + k1+ k2)
2)

+ 3(iκ)4
�

1
i

�4∫ d 4 l
(2π)4

∆(l 2)∆((k1+ l )2)∆((k1+ k2+ l )2)∆((l − k4)
2)

+ 6(−1)(i g )4
�

1
i

�4∫ d 4 l
(2π)4

Tr[S(6 l )S( 6k1+ 6 l )S( 6k1+ 6k2+ 6 l )S(6 l − 6k4)]

k1
k2

k1+ k2+ l

l

k3
k4

k1 l k4

k1+ l

k1+ k2+ l

l − k4

k2 k3

k1 l k4

k1+ l

k1+ k2+ l

l − k4

k2 k3

Figure 2.11: One loop corrections to the four point scalar vertex in Yukawa theory.
Like in pure φ4 theory, the first diagram has 2 more inequivalent permutations of
external legs.

The first diagram is identical to the one in pureφ4 theory and therefore

V4,φ4 loop =
3λ2

16π2

�

1
ε
+finite
�

. (2.146)

The second diagram is finite and has no contribution to the divergent part of Zλ.
Divergent part of the first diagram comes when the numerator includes l 4:

N ∼ (−6 l +m)4 = (l 2)2+ lower order terms in l 2. (2.147)
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We have,

iV4,ψ loop =−24i g 4
∫

d d l̄
(2π)d

µ̃ε( l̄ 2)2

( l̄ 2+D)4

=−
24i g 4

16π2

Γ
� ε

2

�

Γ (4− ε
2 )

Γ (4)Γ
�

2− ε
2

�

�4πµ̃ε

D

�ε/2

=−
3i g 4

2π2

�

2
ε
− 5

6
− ln

D
µ2
+O(ε)
�

. (2.148)

Putting both these parts together

V4/λ=−Zλ+
�

3λ
16π2
−

3g 4

π2λ

�

�

1
ε
+finite
�

, (2.149)

so that
Zλ = 1+
�

3λ
16π2
−

3g 4

π2λ

�

�

1
ε
+finite
�

. (2.150)

2.3.7 Beta function

Comparing the Lagrangian with renormalized fields and parameters,

L= iZψψ̄6∂ ψ−Zm mψ̄ψ− 1
2

Zφ∂
µφ∂µφ−

1
2

ZM M 2φ2

+Zg µ̃
ε/2 gφψ̄ψ+

1
3!

Zκµ̃
ε/2κφ3− 1

4!
Zλµ̃

ελφ4, (2.151)

and the Lagrangian with bare field and parameters,

L= iψ̄0 6∂ ψ0−m0ψ̄0ψ0−
1
2
∂ µφ0∂µφ0−

1
2

M 2
0φ

2
0

+ g0φ0ψ̄0ψ0+
1
3!
κ0φ

3
0−

1
4!
λ0φ

4
0, (2.152)

gives the following relations

ψ0 = Z1/2
ψ
ψ (2.153)

m0 = Z−1
ψ

Zm m (2.154)

φ0 = Z1/2
φ
φ (2.155)

M0 = Z−1/2
φ

Z1/2
M M (2.156)

g0 = Z−1
ψ

Z−1/2
φ

Zg µ̃
ε/2 g (2.157)

κ0 = Z−3/2
φ

Zκµ̃
ε/2κ (2.158)

λ0 = Z−2
φ

Zλµ̃
ελ. (2.159)
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Z factors to one loop are

Zφ = 1−
g 2

4π2

1
ε

(2.160)

ZM = 1+
�

κ2

16π2M 2
+

λ

16π2
−

3g 2m2

2π2M 2

�

1
ε

(2.161)

Zψ = 1−
g 2

16π2

1
ε

(2.162)

Zm = 1+
g 2

8π2

1
ε

(2.163)

Zg = 1+
g 2

8π2

1
ε

(2.164)

Zκ = 1+
�

3λ
16π2
−

3m g 3

π2κ

�

1
ε

(2.165)

Zλ = 1+
�

3λ
16π2
−

3g 4

π2λ

�

1
ε

. (2.166)

To proceed with the calculation of the beta function, define

G(ε, g ,κ,λ) = ln
�

Z−1
ψ

Z−1/2
φ

Zg

�

=
∞
∑

n=1

Gn(g ,κ,λ)
εn

, (2.167)

K(ε, g ,κ,λ) = ln
�

Z−3/2
φ

Zκ
�

=
∞
∑

n=1

Kn(g ,κ,λ)
εn

, (2.168)

L(ε, g ,κ,λ) = ln
�

Z−2
φ

Zλ
�

=
∞
∑

n=1

Ln(g ,κ,λ)
εn

, (2.169)

and using the Z factors above, compute first order coefficients. We have

ln
�

Z−1
ψ

Z−1/2
φ

Zg

�

= ln

�

�

1−
g 2

16π2

1
ε

�−1�

1−
g 2

4π2

1
ε

�−1/2�

1+
g 2

8π2

1
ε

�

�

= ln
�

1+
5g 2

16π2

1
ε

�

=
5g 2

16π2

1
ε
+ · · · , (2.170)

ln
�

Z−3/2
φ

Zκ
�

= ln

�

�

1−
g 2

4π2

1
ε

�−3/2�

1+
�

3λ
16π2
−

3m g 3

π2κ

�

1
ε

�

�

= ln
�

1+
�

3λ
16π2

+
3g 2

8π2
−

3m g 3

π2κ

�

1
ε

�

=
�

3λ
16π2

+
3g 2

8π2
−

3m g 3

π2κ

�

1
ε
+ · · · , (2.171)



30

and

ln
�

Z−2
φ

Zλ
�

= ln

�

�

1−
g 2

4π2

1
ε

�−2�

1+
�

3λ
16π2
−

3g 4

π2λ

�

1
ε

�

�

= ln[1+
�

3λ
16π2

+
g 2

2π2
−

3g 4

π2λ

�

1
ε
]

=
�

3λ
16π2

+
g 2

2π2
−

3g 4

π2λ

�

1
ε
]+ · · · (2.172)

So that

G1(g ,κ,λ) =
5g 2

16π2
+ · · · (2.173)

K1(g ,κ,λ) =
3λ

16π2
+

3g 2

8π2
−

3m g 3

π2κ
+ · · · (2.174)

L1(g ,κ,λ) =
3λ

16π2
+

g 2

2π2
−

3g 4

π2λ
+ · · · (2.175)

On physical grounds, we require the bare parameters g0, κ0 and λ0 to be independent
of µ. This condition leads to

∞
∑

n=1

�

g
∂ Gn

∂ g
d g

d lnµ
+ g

∂ Gn

∂ κ

dκ
d lnµ

+ g
∂ Gn

∂ λ

dλ
d lnµ

�

1
εn
+

d g
d lnµ

+
εg
2
= 0, (2.176)

∞
∑

n=1

�

κ
∂ Kn

∂ g
d g

d lnµ
+κ

∂ Kn

∂ κ

dκ
d lnµ

+κ
∂ Kn

∂ λ

dλ
d lnµ

�

1
εn
+

dκ
d lnµ

+
εκ

2
= 0, (2.177)

∞
∑

n=1

�

λ
∂ Ln

∂ g
d g

d lnµ
+λ

∂ Ln

∂ κ

dκ
d lnµ

+λ
∂ Ln

∂ λ

dλ
d lnµ

�

1
εn
+

dλ
d lnµ

+ ελ= 0. (2.178)

Requiring d g/d lnµ, dκ/d lnµ and dλ/d lnµ to be finite in the ε→ 0 limit means
that we can write

d g
d lnµ

=−
εg
2
+βg (g ,κ,λ), (2.179)

dκ
d lnµ

=−εκ
2
+βκ(g ,κ,λ), (2.180)

dλ
d lnµ

=−ελ+βλ(g ,κ,λ). (2.181)

Substituting and matching powers leads to the following expressions for the beta
functions

βg (g ,κ,λ) = g
�

g
2
∂

∂ g
+
κ

2
∂

∂ κ
+λ

∂

∂ λ

�

G1, (2.182)

βκ(g ,κ,λ) = κ
�

g
2
∂

∂ g
+
κ

2
∂

∂ κ
+λ

∂

∂ λ

�

K1, (2.183)

βλ(g ,κ,λ) = λ
�

g
2
∂

∂ g
+
κ

2
∂

∂ κ
+λ

∂

∂ λ

�

L1. (2.184)
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On substitution and simplification, we get

βg (g ,κ,λ) =
5g 3

16π2
+ · · · (2.185)

βκ(g ,κ,λ) =
3g 2κ

8π2
−

3m g 3

π2
+

3κλ
16π2

+ · · · (2.186)

βλ(g ,κ,λ) =
3λ2

16π2
+

g 2λ

2π2
−

3g 4

π2
+ · · · (2.187)

2.3.8 Anomalous dimension of mass

Define
A(ε, g ,κ,λ) = ln

�

Z−1/2
φ

Z1/2
M

�

=
∞
∑

n=1

An(g ,κ,λ)
εn

(2.188)

and
B(ε, g ,κ,λ) = ln

�

Z−1
ψ

Zm

�

=
∞
∑

n=1

Bn(g ,κ,λ)
εn

. (2.189)

With the Z factors as above, we have

ln
�

Z−1/2
φ

Z1/2
M

�

= ln

�

�

1−
g 2

4π2

1
ε

�−1/2�

1+
�

κ2

16π2M 2
+

λ

16π2
−

3g 2m2

2π2M 2

�

1
ε

�1/2�

= ln
�

1+
�

λ

32π2
+

κ2

32π2M 2
+

g 2

8π2

�

1− 6m2

M 2

��

1
ε

�

=
�

λ

32π2
+

κ2

32π2M 2
+

g 2

8π2

�

1− 6m2

M 2

��

1
ε
+ · · · (2.190)

and

ln
�

Z−1
ψ

Zm

�

= ln

�

�

1−
g 2

16π2

1
ε

�−1�

1+
g 2

8π2

1
ε

�

�

= ln
�

1+
3g 2

16π2

1
ε

�

=
3g 2

16π2

1
ε
+ · · · . (2.191)

So that

A1 =
λ

32π2
+

κ2

32π2M 2
+

g 2

8π2

�

1− 6m2

M 2

�

and B1 =
3g 2

16π2
. (2.192)

On physical grounds, M0 and m0 should be independent of µ. Therefore, we must
have

0=
d ln M0

d lnµ
=

d ln M
d lnµ

+
dA

d lnµ
, (2.193)
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so that

γM (g ,κ,λ) =− dA
d lnµ

=−
∞
∑

n=1

�

d g
d lnµ

∂

∂ g
+

dκ
d lnµ

∂

∂ κ
+

dλ
d lnµ

∂

∂ λ

�

An(g ,κ,λ)
εn

=
�

g
2
∂

∂ g
+
κ

2
∂

∂ κ
+λ

∂

∂ λ

�

A1+powers of 1/ε. (2.194)

Finiteness of γM in the ε → 0 limit means that the powers of 1/ε must all cancel.
Substituting A1 in the above expression gives

γM (g ,κ,λ) =
g 2

8π2

�

1− 6m2

M 2

�

+
κ

32π2M 2
+

λ

32π2
+ · · · . (2.195)

Similarly, for the fermion we have

γm(g ,κ,λ) =
�

g
2
∂

∂ g
+
κ

2
∂

∂ κ
+λ

∂

∂ λ

�

B1

=
3g 2

16π2
+ · · · . (2.196)

2.3.9 Anomalous dimension of the field

We have

lnZφ = ln
�

1−
g 2

4π2

1
ε

�

=−
g 2

4π2

1
ε

, (2.197)

and the anomalous dimension of the scalar field is

γφ(g ,κ,λ) =
1
2

d lnZφ
d lnµ

=
1
2

�

∂ lnZφ
∂ g

d g
d lnµ

+
∂ lnZφ
∂ κ

dκ
d lnµ

+
∂ lnZφ
∂ λ

dλ
d lnµ

�

=−1
2

g
2π2

1
ε

�

−
εg
2
+βg (g ,κ,λ)
�

=
g 2

8π2
+ · · · . (2.198)

Similarly,

lnZψ =−
g 2

16π2

1
ε

, (2.199)
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and the anomalous dimension of the fermion field is

γψ(g ,κ,λ) =
1
2

d lnZψ
d lnµ

=
1
2

∂ lnZψ
∂ g

d g
d lnµ

=−1
2

g
8π2

1
ε

�

−
εg
2
+βg (g ,κ,λ)
�

=
g 2

32π2
+ · · · . (2.200)
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Chapter 3

Quantum Electrodynamics

Quantum electrodynamics is an abelian gauge theory based on the
abelian gauge group U(1). Matter is coupled to the electromagnetic field by requiring
the Lagrangian to be manifestly invariant under a local U(1) gauge transformation by
replacing ordinary derivatives with a gauge covariant derivative

Dµ = ∂µ− i eAµ, (3.1)

where the gauge field Aµ(x) is a four-vector, and adding a gauge covariant kinetic term
for the gauge field

−1
4

F µνFµν =+
1
2

Aµ(gµν − ∂µ∂ν )A
ν , (3.2)

where Fµν = ∂µAν − ∂νAµ is called the electromagnetic field strength tensor.

Calculations in this chapter have been adapted from Srednicki

3.1 Coupled to spinors

For a spinor field the kinetic term is iψ̄6∂ ψ. After the replacement ∂ → D , we
have

iψ̄ 6Dψ= iψ̄6∂ ψ+ eψ̄6Aψ, (3.3)

and therefore spinor electrodynamics is described by the Lagrangian

L=−1
4

F µνFµν + iψ̄6∂ ψ−mψ̄ψ+ eψ̄6Aψ. (3.4)

After adding appropriate Z factors, it can be arranged into free, interacting and coun-
terterm pieces,

L0 =−
1
4

F µνFµν + iψ̄6∂ ψ−mψ̄ψ, (3.5)

L1 = Z1eψ̄6Aψ+ Lct, (3.6)

Lct =−
1
4
(Z3− 1)F µνFµν + i(Z2− 1)ψ̄6∂ ψ− (Zm − 1)mψ̄ψ, (3.7)

where Z1, Z2 and Z3 are traditional names.
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3.1.1 Tadpoles

The interacting part of the Lagrangian does not lead to any contributions to the
vacuum expectation value of the fermion field: 〈0|ψ(x)|0〉= 0, as in the case of the
free theory.

There are tadpoles that contribute to the vacuum expectation value of the gauge field
Aµ(x), but they all evaluate to zero. For the diagram below, the contribution is

〈0|Aµ(x)|0〉∝ (−1)i e
∫

d 4 p
(2π)4

Tr[(−6 p +m)γµ]
p2+m2

=−i e
∫

d 4 p
(2π)4

Tr[−6 pγµ]
p2+m2

= 0,

(3.8)
because the integral is an odd function of p.

Figure 3.1: Tadpoles in in spinor electrodynamics.

3.1.2 Corrections to the photon propagator

Thephotonpropagator receives the following loop and countertermcorrections.

k
k + l

l

k k k

Figure 3.2: One loop correction to the photon propagator in spinor electrodynamics.

We have the loop contribution,

iΠµν
ψ loop(k) =−(i e)2

�

1
i

�2∫ d 4 l
(2π)4

Tr[γµ(−6 l −6k +m)γ ν (−6 l +m)]
((l + k)2+m2)(l 2+m2)

+O(e4) (3.9)

and the counterterm

iΠµνct =−i(Z3− 1)(k2 gµν − kµkν ). (3.10)

Simplifying the numerator of the loop contribution, we get

4Nµν =Tr[γµ(−6 l −6k +m)γ ν (−6 l +m)]

=Tr[γµ6 lγ ν6 l + γµ6kγ ν6 l +mγµγ ν]

= 4(lα lβ+ kα lβ)[4gµα g νβ− 4gµν gαβ+ 4gµβ gαν]− 4m gµν

= 4(2lµ l ν + kµ l ν + lµkν )− 4gµν[l (l + k)+m], (3.11)
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where in the second line we multiplied everything and dropped terms with an odd
number of gamma matrices, and in the third line, traces were evaluated using

Tr[γµγ ν] =−4gµν (3.12)

and
Tr[γµγ νγργσ] = 4gµν gρσ − 4gµρ g νσ + 4gµσ g νρ. (3.13)

We convert the denominator into an integral over Feynman parameters,

1
[l 2+m2][(l + k)2+m2]

=
∫

d x
1

(q2+D)2
, (3.14)

where q = l+xk and D = x(1−x)k2+m2, and replace l in the numerator for q ,

Nµν = 2lµ l ν + kµ l ν + lµkν − gµν[l (l + k)+m]

= 2qµq ν − q2 gµν − 2x(1− x)kµkν + x(1− x)k2 gµν −m2 gµν

=
��

2
d
− 1
�

q2+ x(1− x)k2−m2
�

gµν − 2x(1− x)kµkν

= 2x(1− x)
�

k2 gµν − kµkν
�

, (3.15)

where, in the second line terms linear in q were dropped, in the third lineweused
∫

d d q qµq ν f (q2) =
gµν

d

∫

d d q q2 f (q2) (3.16)

to make the replacement qµq ν → d−1q2 gµν , and in the fourth line we used

�

2
d
− 1
�
∫

d d q
(2π)d

q2

(q2+D)2
=D
∫

d d q
(2π)d

1
(q2+D)2

, (3.17)

to make the replacement (2/d − 1)q2→D .

Analytically continuing to d dimensions andputting everything together, wehave

iΠµν
ψ loop =−4e2µ̃ε

∫

d xNµν
∫

d d q
(2π)d

1
(q2+D)2

=−4i e2

8π2

1
ε

∫

d x Nµν +finite

=−4i e2

8π2

1
ε
(k2 gµν − kµkν )
∫

d x 2x(1− x)

=− i e2

6π2

1
ε
(k2 gµν − kµkν ), (3.18)

where, in the second line we used
∫

d d q
(2π)d

1
(q2+D)2

=
i

8π2

1
ε
+finite, (3.19)
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in the third line we used the simplified form of Nµν derived above, and in the fourth
line we used
∫

d x x(1− x) = 1/6.

Finally, we have the photon self-energy

Πµν1 loop =Π
µν
ψ loop+Π

µν
ct

=
�

− e2

6π2

1
ε
− (Z3− 1)
�

(k2 gµν − kµkν )+finite. (3.20)

For Πµν1 loop to be finite, we must have

Z3 = 1− e2

6π2

1
ε

. (3.21)

Also note that the photon self-energy is transverse, Πµνkν = kµΠ
µν = 0, as expected

from gauge invariance.

3.1.3 Corrections to the fermion propagator

At one loop the fermion propagator receives the following corrections.

p

l

p + l

p p p

Figure 3.3: One loop correction to the fermion propagator in spinor electrodynamics

We have,

iΣ1 loop(6 p) = (i e)2
�

1
i

�2∫ d 4 l
(2π)4

γµ(−6 p −6 l +m)γµ
l 2((l + p)2+m2)

− i(Z2− 1)6 p − i(Zm − 1)m+O(e4). (3.22)

As before, the denominator can be written as an integral over Feynman parame-
ters,

1
l 2((l + p)2+m2)

=
∫

d x
1

(q2+D)2
, (3.23)

where q = l + x p and D = x(1− x)p2 + x m2. The numerator can also be simpli-
fied,

N = γµ(−6 p −6 l +m)γm u

=−(d − 2)(6 p + 6 l )− d m

=−(d − 2)(6q +(1− x)6 p)− d m

=−(2− ε)(6q +(1− x)6 p)− (4− ε)m, (3.24)
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where, to get to the second line we used γµγµ =−d and γµ6aγµ = (d−2)6a, in the third
line we used q = l+ x p and in the fourth line we havemade the substitution d = 4−ε.
Furthermore, the term linear in q integrates to zero and can be dropped.

Putting everything together, analytically continuing to d = 4− ε dimensions and
using

µ̃ε
∫

d d q
(2π)d

1
(q2+D)2

=
i

8π2

1
ε
+finite, (3.25)

we have

Σ1 loop(6 p) =−
e2

8π2

1
ε

∫

d x[(2− ε)(1− x)6 p +(4− ε)m]− (Z2− 1)6 p − (Zm − 1)m

=− e2

8π2

1
ε
(6 p + 4m)− (Z2− 1)6 p − (Zm − 1)m, (3.26)

where, in the second line we dropped all finite terms (as ε→ 0). To keep the self-energy,
Σ(6 p) finite, we must have

Z2 = 1− e2

8π2

1
ε

and Zm = 1− e2

2π2

1
ε

. (3.27)

3.1.4 Corrections to the vertex

Thevertex in spinor electrodynamics receives the following correction at one loop.

p1

p1+ lp2+ l

p2
l

k

Figure 3.4: One loop correction to the spinor-spinor-photon vertex in spinor electro-
dynamics.

iV µ
1 loop = iZ1eγµ+(i e)3

�

1
i

�3∫ d 4 l
(2π)4

γ ν (−6 l −6 p2+m)γµ(−6 l −6 p1+m)γν
((l + p2)2+m2)((l + p1)2+m2)l 2

(3.28)

Writing the denominator as an integral over Feynman parameters, we have

1
((l + p2)2+m2)((l + p1)2+m2)l 2

=
∫

d F3
1

(q2+D)3
, (3.29)

where q = l + x1 p1+ x2 p2 and D = x1(1− x1)p1+ x2(1− x2)p2− 2x1x2 p1 p2+ (x1+
x2)m.
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We simplify the numerator,

Nµ = γ ν (−6 l −6 p2+m)γµ(−6 l −6 p1+m)γν
= γ ν (−6q + x1 p1− (1− x2)p2+m)γµ(−6q − (1− x1)p1+ x2 p2+m)γν
= γ ν 6qγµ6qγµ+ Ñµ, (3.30)

where Ñµ = γ ν (x1 p1 − (1− x2)p2 +m)γµ(−(1− x1)p1 + x2 p2 +m)γν , and we have
dropped terms linear in q . Contribution to the divergent part of the integral comes
only from the terms quadratic in q , which can be further simplified,

γ ν 6qγµ6qγν →
1
d

q2γ νγαγµγαγν =
(d − 2)2

d
q2γµ, (3.31)

where in the first line, we made the substitution qαqβ→ d−1q2 gαβ, and in the second
line we used γν6aγ ν = (d − 2)6a.

Analytically continuing to d dimensions and putting all the pieces together, we
have

γµµ̃ε
∫

d F3

∫

d d q
(2π)d

q2

(q2+D)3
= γµ

i
8π2

1
ε
+finite. (3.32)

Finally, we get

iV µ
1 loop = iZ1eγµ+ i eγµ

�

e2

8π2

1
ε
+finite
�

. (3.33)

For the vertex function to be finite, we must have

Z1 = 1− e2

8π2

1
ε
+O(e4). (3.34)

3.1.5 Beta function

Comparing the Lagrangian with renormalized parameters and fields,

L=−1
4

Z3F µνFµν + iZ2ψ̄6∂ ψ−Zm mψ̄ψ+Z1µ̃
ε/2eψ̄6Aψ, (3.35)

to the Lagrangian with bare parameters and fields,

L=−1
4

F µν0 F0µν + iψ̄0 6∂ ψ0−m0ψ̄0ψ0+ e0ψ̄06A0ψ0, (3.36)

we have the following relations,

A0 = Z1/2
3 A (3.37)

ψ0 = Z1/2
2 ψ (3.38)

m0 = Z−1
2 Zm m (3.39)

e0 = Z−1/2
3 Z−1

2 Z1µ̃
ε/2e , (3.40)
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with α= e2/4π, we also have

α0 = Z−1
3 Z−1

2 Z2
1 µ̃

εα. (3.41)

From the previous three sections, we also have the Z factors,

Z1 = 1− e2

8π2

1
ε
= 1− α

2π
1
ε

, (3.42)

Z2 = 1− e2

8π2

1
ε
= 1− α

2π
1
ε

, (3.43)

Zm = 1− e2

2π2

1
ε
= 1− 2α

π

1
ε

, (3.44)

Z3 = 1− e2

6π2

1
ε
= 1− 2α

3π
1
ε

. (3.45)

For the beta function, consider

lnα0 = E + lnα+ ε ln µ̃, (3.46)

where E(α,ε) = lnZ−1
3 Z−2

2 Z2
1 and due to the form of the Z factors we also have

E(α,ε) =
∞
∑

n=1

En(α)
εn

. (3.47)

By analysis of the previous chapter, we have

dα
d lnµ

=−εα+α2E ′1(α), (3.48)

and therefore, the beta functionβ(α) = α2E ′1(α).

Note that Z2
1 Z−2

2 = 1+O(α2), so we have (at least through O(α2))

E(α,ε) =− lnZ3 =− ln
�

1− 2α
3π

1
ε

�

=
2α
3π

1
ε
+ · · · , (3.49)

so that E1(α) = 2α/3π+O(α2). Finally, the beta function is

β(α) =
2α2

3π
+O(α3). (3.50)

Alternatively, in terms of e ,

β(e) =
e3

12π2
+O(e5). (3.51)

This result can be easily generalized for N Dirac fields with electric charges Qi e (i =
1, . . . ,N ). At one loop, the fermion fields and masses will be renormalized by a photon
loop as above, but we must make the replacement e→Qi e . In particular,

Z2i = 1−
Q2

i e2

8π2

1
ε

and Zmi = 1−
Q2

i e2

2π2
. (3.52)
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Similarly,

Z1i = 1−
Q2

i e2

8π2

1
ε

. (3.53)

The photon propagator, however, will be corrected by a fermion loop due to each of
the N fields and we must have

Z3 = 1−
∑N

i=1 Q2
i e2

6π2

1
ε

. (3.54)

Proceeding as before, we note that Z1i/Z2i = 1+O(e2), therefore E(e ,ε) = − lnZ3,
and finally,

β(e) =
∑N

i=1 Q2
i e3

12π2
+O(e5). (3.55)

3.1.6 Anomalous dimension of mass

As m0 = Z−1
2 Zm m, we have

ln m0 =A(α,ε)+ ln m, (3.56)

where A(α,ε) = lnZ−1
2 Zm , and we expect A=

∑∞
n=1 An(α)/ε

n . On physical grounds,
m0 must be independent of µ, therefore

0=
d ln m0

d lnµ
=
∂ A
∂ α

dα
d lnµ

+
1
m

d m
d lnµ

. (3.57)

Anomalous dimension of mass is defined as

γm(α) =
1
m

d m
d lnµ

, (3.58)

therefore,

γm(α) =−
∂ A
∂ α

dα
d lnµ

=−
∞
∑

n=1

A′n(α)
εn
(−εα+β(α))

= αA′1(α) + powers of 1/ε. (3.59)

In a renormalizable theory γm should be finite, so the powers of 1/ε must all can-
cel.

A(α,ε) = lnZ−1
2 Zm =
�

α

2π
− 2α
π

�

1
ε
=− 3α

2π
1
ε

, (3.60)

so that A1 =−3α/2π and therefore

γm(α) =−
3α
2π
+O(α2). (3.61)
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3.1.7 Anomalous dimension of fields

Using the definition of the anomalous dimension of fields, we have

γψ(α) =
1
2

d lnZ2

d lnµ

=
1
2
∂ lnZ2

∂ α

dα
d lnµ

=
1
2

�

− 1
2πε

+ · · ·
�

(−αε+β(α))

=
α

4π
+ · · · . (3.62)

Similarly, for the gauge field, we have

γA(α) =
1
2

d lnZ3

d lnµ

=
1
2
∂ lnZ3

∂ α

dα
d lnµ

=
1
2

�

− 2
3πε

+ · · ·
�

(−αε+β(α))

=
α

3π
+ · · · . (3.63)

3.2 Coupled to scalars

As before we start with the manifestly gauge covariant Lagrangian for a complex scalar
field with quartic self-interaction,

L=−(Dµφ)†Dµφ−M 2φ†φ− 1
4
λ(φ†φ)2− 1

4
F µνFµν , (3.64)

where the gauge covariant derivative, Dµ = ∂µ− i eAµ, and Aµ is the abelian gauge
field. The quartic interaction is needed to absorb divergences from four point scalar
vertices. Expanding the covariant derivative in the kinetic term for the scalar field we
have,

(Dµφ)†Dµφ= ∂
µφ†∂µφ− i eAµ[(∂µφ

†)†φ−φ†(∂µφ)]+ e2AµAµφ
†φ. (3.65)

After introducing appropriate Z factors and organizing the Lagrangian into free,
interacting and counterterm pieces, we have

L0 =−∂
µφ†∂µφ−M 2φ†φ− 1

4
F µνFµν , (3.66)

L1 = iZ1eAµ[(∂µφ
†)φ−φ†(∂µφ)]− iZ4e2AµAµφ

†φ− 1
4

Zλλ(φ
†φ)2+ Lct, (3.67)

Lct =−(Z2− 1)∂ µφ†∂µφ− (ZM − 1)M 2φ†φ− 1
4
(Z3− 1)F µνFµν , (3.68)

so that L= L0+ L1.
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3.2.1 Tadpoles

Interactions in the Lagrangian above do not give any tadpole diagrams with a scalar
source. However, there are tadpoles with a photon source as below.

Figure 3.5: Tadpoles in scalar electrodynamics.

The diagram above is proportional to
∫

d 4 l
(2π)4

lµ

l 2+M 2
= 0, (3.69)

because the integrand is an odd function of the integration variable l . Hence tadpoles
vanish, as anticipated by gauge invariance.

3.2.2 Corrections to the photon propagator

At one loop, the photon propagator receives corrections from the following two
diagrams.

k
l + k

l

k k

l

k k k

Figure 3.6: One loop corrections to the photon propagator in scalar electrodynamics.

We have the following contributions to the photon self-energy,

iΠµν (k) = (iZ1e)2
�

1
i

�2∫ d 4 l
(2π)4

(2l + k)µ(2l + k)ν

((l + k)2+M 2)(l 2+M 2)

+ (−2iZ4e2)gµν
�

1
i

�
∫

d 4 l
(2π)4

1
l 2+M 2

− i(Z3− 1)(k2 gµν − kµkν ). (3.70)

Analytically continuing to d = 4−ε dimensions, replacing e→ eµ̃ε/2, and combining
the two integrals, we have

e2µ̃ε
∫

d d l
(2π)d

Nµν

((l + k)2+M 2)(l 2+M 2)
, (3.71)

with
Nµν = (2l + k)µ(2l + k)ν − 2gµν ((l + k)2+M 2). (3.72)
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Writing the denominator as an integral over Feynman parameters, we have

µ̃ε
∫

d d l
(2π)d

Nµν

((l + k)2+M 2)(l 2+M 2)
= µ̃ε
∫

d xNµν
∫

d d q
(2π)d

1
(q2+D)2

, (3.73)

with q = l + xk, D = x(1− x)k2+M 2 and

Nµν = (2l + k)µ(2l + k)ν − 2gµν ((l + k)2+M 2)

= (2q +(1− 2x)k)µ(2q +(1− 2x)k)ν − 2gµν ((q +(1− x)k)2+M 2)

= 4qµq ν − 2gµνq2+(1− 2x)2kµkν − 2gµν[(1− x)2k2+M 2]

= 2gµν
�

2
d
− 1
�

q2+(1− 2x)2kµkν − 2gµν[(1− x)2k2+M 2]

= 2gµν[x(1− x)k2+M 2]+ (1− 2x)2kµkν − 2gµν[(1− x)2k2+M 2]

=−2(1− 2x)(1− x)k2 gµν +(1− 2x)2kµkν , (3.74)

where we dropped terms linear in q , used
∫

d d q qµq ν = gµνd−1q2, and

�

2
d
− 1
�
∫

d d q
(2π)d

q2

(q2+D)2
=
∫

d d q
(2π)d

D
(q2+D)2

, (3.75)

to make the replacement (2/d − 1)q2→D . Putting all this together, we have

iΠµνloop = e2
∫

d x Nµν
∫

d d q
(2π)d

µ̃ε

(q2+D)2

= e2
∫

d x [−2(1− 2x)(1− x)k2 gµν +(1− 2x)2kµkν]
� i

8π2

1
ε
+ · · ·
�

=− i e2

24π2

1
ε
(k2 gµν − kµkν ). (3.76)

With this, we have

Πµν (k) = (k2 gµν − kµkν )
�

− e2

24π2
+ · · ·
�

− (Z3− 1)(k2 gµν − kµkν ), (3.77)

and to keep the self-energy finite, we have the Z factor,

Z3 = 1− e2

24π2

1
ε

. (3.78)

3.2.3 Corrections to the scalar propagator

At one loop, the scalar propagator receives the following corrections.

For one loop calculations in this theory, Lorenz gauge simplifies calculations greatly.
Photon propagator in the Lorenz gauge is

∆µν (l ) =
1

l 2− iε

�

gµν − lµ l ν

l 2

�

=
Pµν (l )
l 2− iε

. (3.79)
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k

l + k

l

k k

l

k k

l

k

Figure 3.7: One loop corrections to the scalar propagator in scalar electrodynamics.

Note that Pµν (l )lµ = 0. The diagrams above yield

iΠ(k2) = (i e)2
�

1
i

�2∫ d 4 l
(2π)4

Pµν (l )(l + 2k)µ(l + 2k)ν
l 2((l + k)2+M 2)

+ (−2i e2)
�

1
i

�
∫

d 4 l
(2π)4

gµνP
µν (l )

l 2+m2
γ

+(−iλ)
�

1
i

�
∫

d 4 l
(2π)4

1
l 2+M 2

− i(Z2− 1)k2− i(ZM − 1)M 2. (3.80)

The last integral above is the same as the one in pureφ4 theory. For the second integral,
consider gµνP

µν = gµν (g
µν − lµ l ν/l 2) = d − 1, so that

∫

d 4 l
(2π)4

gµνP
µν (l )

l 2+m2
γ
= (d − 1)
∫

d 4 l
(2π)4

1
l 2+m2

γ

= (d − 1)
∫

d d l
(2π)d

µ̃ε

l 2+m2
γ

=−(d − 1)
iµ̃ε

8π2ε
m2
γ , (3.81)

which vanishes as mγ → 0.

For the first integral, consider the numerator

Pµν (l )(l + 2k)µ(l + 2k)ν = 4
�

gµν − lµ l ν

l 2

�

kµkν

=
4
l 2
(l 2k2− (l k)2), (3.82)

so that
∫

d 4 l
(2π)4

Pµν (l )(l + 2k)µ(l + 2k)ν
l 2((l + k)2+M 2)

=
∫

d 4 l
(2π)4

4(l 2k2− (l k)2)
l 2 l 2((l + k)2+M 2)

(3.83)

Writing the denominator as in integral over Feynman parameters, we have

1
l 2 l 2((l + k)2+M 2)

=
∫

d F3
1

(q2+D)3
, (3.84)
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where q = l + x3k and D = x3(1− x3)k
2+ x3M 2. We also express the numerator in

terms of q ,

N = l 2k2− (l k)2

= (q − x3k)2k2− [(q − x3k)k]2

= q2k2− (qk)2

= q2k2
�

1− 1
d

�

, (3.85)

where we dropped terms linear in q and used
∫

d d q qµq ν = gµνd−1q2. Since we are
only interested in the divergent term, set d = 4. We need the following integral over
q ,

∫

d d q
(2π)d

i
8π2

1
ε
+O(ε0). (3.86)

Putting everything together, we have

iΠ(k2) =
�

3i e2k2

8π2
+

iλM 2

8π2

�

1
ε
− i(Z2− 1)k2− i(ZM − 1)M 2, (3.87)

so that
Z2 = 1+

3e2

8π2

1
ε

and ZM = 1+
λ

8π2

1
ε

. (3.88)

3.2.4 Corrections to the scalar-scalar-photon vertex

The scalar-scalar-photon vertex receives corrections from the following diagrams at
one-loop level. External momenta cannot all be set to zero because the tree level vertex
factor iZ1e(k + k ′)µ depends on the momentum of scalar lines. In particular, both
external scalars cannot have zero momentum. However, to simplify calculations as
much as possible, we have made a particular choice: outgoing scalar has momentum
k, while the momenta for the photon and the incoming scalar have both been set to
zero.

l

l + k
k

l

l + k

l

k

l

l
k

l + k

l
k

Figure 3.8: Corrections to the scalar-scalar-photon vertex in scalar electrodynamics.
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Writing out the contributions explicitly, we have

iV µ
3 = iZ1ekµ+(i e)3

�

1
i

�3∫ d 4 l
(2π)4

(2k + l )µ(2k + l )νPνρ(l )l
ρ

l 2(l 2+M 2)((l + k)2+M 2)

+ (−2i e2)(i e)
�

1
i

�2∫ d 4 l
(2π)4

gµνPνρ(l )(l + 2k)ρ

l 2((l + k)2+M 2)

+ (−2i e2)(i e)
�

1
i

�2∫ d 4 l
(2π)4

gµνPνρ(l )l
ρ

l 2(l 2+M 2)

+ (−iλ)(i e)
�

1
i

�2∫ d 4 l
(2π)4

(2l + k)µ

(l 2+M 2)((l + k)2+M 2)
. (3.89)

We note that the first and third integrands are proportional to Pνρ(l )l
ρ = 0, and

therefore vanish. In the last line, after converting the denominator to an integral over
Feynman parameters, we have

∫

d x
1

(q2+D)2
, (3.90)

with q = l + xk and D = x(1− x)k2+M 2. The numerator becomes

(2l + k)µ = 2qµ+(1− 2x)kµ. (3.91)

First term vanishes after an integration over q , and the second term vanishes after
integration over x. Hence, the first, third and fourth diagrams vanish.

For the second diagram, consider the numerator

Nµ = gµνPνρ(l )(l + 2k)ρ

= 2gµν
�

gνρ−
lν lρ
l 2

�

kρ

=
2
l 2

�

l 2kµ− lµ(l k)
�

. (3.92)

Lumping l−2 with the denominator and converting the it to an integral over Feynman
parameters, we will have q = l + x3k and D = x3(1− x3)k

2+ x3M 2. Rewriting the
numerator in terms of q , we have

Nµ = 2(l 2kµ− lµ(l k))

= 2[q2kµ+ x2k2kµ− qµ(qk)− x2kµk2]

= 2q2kµ
�

1− 1
d

�

, (3.93)

where we dropped terms linear in q and made the replacement qµqν = gµνd
−1q2. As

we are interested only in the divergence, set d = 4. Finally, using
∫

d d q
(2π)d

q2

(q2+D)3
=

i
8π2

1
ε
+ · · · , (3.94)



49

and putting everything together, we have

iV µ
3 = iZ1ekµ− 3i e3kµ

8π2

1
ε

, (3.95)

so that
Z1 = 1+

3e2

8π2

1
ε

. (3.96)

3.2.5 Corrections to the scalar-scalar-photon-photon vertex

The scalar-scalar-photon-photon vertex receives corrections from the following dia-
grams. As the tree level vertex factor−2i e gµν does not depend on external momenta,
they have all been set to zero.

l l

l l

l l

l l

Figure 3.9: One loop corrections to the scalar-scalar-photon-photon vertex in scalar
electrodynamics.

For the first diagram, the corresponding integral is

(−2i e2)(i e)2
�

1
i

�3∫ d 4 l
(2π)4

gµν lρ lσPρσ (l )

l 2(l 2+M 2)(l 2+M 2)
. (3.97)

Note that the integrand is proportional to Pρσ (l )l
ρ = 0, and therefore the diagram

vanishes. In particular, whenever there is an external scalar attaches to an internal
photon, the diagrammust vanish because it would contain a term like Pρσ (l )l

ρ. By
this argument, the first three and last two diagrams would vanish.

Contributions from the remaining three diagrams give

iV µν
4 =−2iZ4e2 gµν + 2(−iλ)(i e)2

�

1
i

�3∫ d 4 l
(2π)4

(2lµ)(2l ν )
(l 2+M 2)3

+ 2(−2i e2)2
�

1
i

�2∫ d 4 l
(2π)4

gµρPρσ (l )g
σν

l 2(l 2+M 2)

+ (−iλ)(−2i e2)
�

1
i

�2
gµν
∫

d 4 l
(2π)4

1
(l 2+M 2)2

. (3.98)



50

We start with the integral in the first line. Numerator can be simplified by using the
symmetric integration identity, lµ l ν → gµνd−1 l 2,

−2e2λgµν
∫

d 4 l
(2π)4

4d−1 l 2

(l 2+M 2)3
=−2e2λgµν
� i

8π2

1
ε
+ · · ·
�

, (3.99)

where the integral was done in the usual way, and we set d = 4, because we are only
interested in the divergent piece.

For the second integral, consider the numerator

Pµν (l ) = gµν − lµ l ν

l 2
= gµν
�

1− 1
d

�

, (3.100)

where we made the replacement lµ l ν → gµνd−1 l 2 because the rest of the integrand is
only a function of l 2. The integrand becomes

8e4
�

1− 1
d

�

gµν
∫

d 4 l
(2π)4

1
l 2(l 2+M 2)

→ 6e4 gµν
� i

8π2

1
ε
+ · · ·
�

= gµν
3i e4

4π2

1
ε
+ · · · .

(3.101)

For the final diagram, we have

2e2λgµν
∫

d 4 l
(2π)4

1
(l 2+M 2)2

→ 2e2λgµν
� i

8π2

1
ε
+ · · ·
�

. (3.102)

Putting the three pieces together, we have

iV µν
4 =−2iZ4e2 gµν +

3i e4 gµν

4π2

1
ε

. (3.103)

Absorbing the divergence in the Z factor, we have

Z4 = 1+
3e2

8π2

1
ε

. (3.104)

3.2.6 Corrections to the four scalar vertex

As before, the tree level vertex factor−iZλλ does not depend on external momenta, so
we set them all to zero. Diagrams in which an external scalar connects to an internal
photon by a three point vertex vanish for the same reason as before. Diagrams with
nonzero contribution are given below.

Top two diagrams with a photon loop have identical divergent part, and both have a
symmetry factor of 2. Similarly, the three diagrams below with a scalar loop have iden-
tical divergent parts and the third diagram has a symmetry factor of 2. We have

iV4φ =−iZλλ+
�

1
2
+

1
2

�

(−2i e2)2
�

1
i

�2∫ d 4 l
(2π)4

gµνPµρ(l )Pνσ (l )g
ρσ

(l 2+m2
γ )2

+
�

1+ 1+
1
2

�

(−iλ)2
�

1
i

�2∫ d 4 l
(2π)4

1
(l 2+M 2)2

. (3.105)
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Figure 3.10: One loop corrections to the four point scalar vertex in scalar electrody-
namics.

For the first integral, we use

gµνPµρ(l )Pνσ (l )g
ρσ = P νρP ρ

ν = P νν = (d − 1), (3.106)

and
∫

d d q
(2π)d

1
(q2+D)2

=
i

8π2

1
ε
+ · · · , (3.107)

to get

�

1
2
+

1
2

�

(−2i e2)2
�

1
i

�2∫ d 4 l
(2π)4

gµνPµρ(l )Pνσ (l )g
ρσ

(l 2+m2
γ )2

=
(d − 1)i e4

2π2

1
ε
+O(ε0).

(3.108)
Similarly, for the second integral, we have
�

1+ 1+
1
2

�

(−iλ)2
�

1
i

�2∫ d 4 l
(2π)4

1
(l 2+M 2)2

=
5iλ2

16π2

1
ε
+O(ε0). (3.109)

Setting d = 4 and putting everything together,

V4φ =−Zλλ+
�

3e4

2π2
+

5λ2

16π2

�

1
ε
+O(ε0). (3.110)

To keep the vertex function finite, we have

Zλ = 1+
�

3e4

2π2λ
+

5λ
16π2

�

1
ε

. (3.111)
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3.2.7 Beta functions

Comparing the renormalized Lagrangian in 4− ε dimensions

L=−Z2∂
µφ†∂µφ−ZM M 2φ†φ− 1

4
F µνFµν −

1
4

Zλλµ̃
ε(φ†φ)2

+ iZ1eµ̃ε/2Aµ[(∂µφ
†)φ−φ†(∂µφ)]− iZ4e2µ̃εAµAµφ

†φ, (3.112)

and the Lagrangian with bare fields and parameters,

L=− ∂ µφ†
0∂µφ0−M 2

0φ
†
0φ0−

1
4

F µν0 F0µν −
1
4
λ(φ†

0φ0)
2

+ i eAµ0 [(∂µφ
†
0)φ0−φ

†
0(∂µφ0)]− i e2Aµ0 A0µφ

†
0φ0, (3.113)

we have the relations

φ0 = Z1/2
2 φ (3.114)

M0 = Z1/2
M Z−1/2

2 M (3.115)

Aµ0 = Z1/2
3 Aµ (3.116)

e0 = Z1Z−1
2 Z−1/2

3 µ̃ε/2e (3.117)
e2
0 = Z−1

2 Z−1
3 Z4µ̃

εe2 (3.118)
λ0 = Z−2

2 Zλµ̃
ελ. (3.119)

We notice that Z4 = Z2
1 Z−1

2 must hold. From our computations in the four previous
sections,

Z1 = 1+
3e2

8π2

1
ε

(3.120)

Z2 = 1+
3e2

8π2

1
ε

(3.121)

Z3 = 1− e2

24π2

1
ε

(3.122)

Z4 = 1+
3e2

8π2

1
ε

(3.123)

Zλ = 1+
�

3e4

2π2λ
+

5λ
16π2

�

1
ε

(3.124)

ZM = 1+
λ

8π2

1
ε

. (3.125)

If we define, E(α,ε) = ln
�

Z1
1 Z−1

2 Z−1/2
3

�

and L(α,ε) = ln
�

Z−2
2 Zλ
�

, and notice that both
can be expressed as power series in 1/ε, the beta functions are given by

βe (e ,λ) = e
� e

2
∂

∂ e
+λ

∂

∂ λ

�

E1(e ,λ) (3.126)

βλ(e ,λ) = λ
� e

2
∂

∂ e
+λ

∂

∂ λ

�

L1(e ,λ), (3.127)

whereE1 andL1 are coefficients of 1/ε in thepower series forE andL respectively.
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Notice that Z1 = Z2 to at least this order in e . Therefore, we have

E(e ,λ) = ln
�

Z−1
3

�

=− lnZ3 =
�

e2

24π2
+O(e4)
�

1
ε
+O(ε−2), (3.128)

so that E1 = e2/24π2+O(e4). Beta function for scalar-photon coupling is

βe (e ,λ) =
e3

48π2
+O(e5). (3.129)

Similarly, consider

L(e ,λ) = ln

�

�

1+
3e2

8π2

1
ε

�−2�

1+
�

3e4

2π2λ
+

5λ
16π2

�

1
ε

�

�

= ln
�

1+
�

5λ
16π2

+
−3e2

4π2
+

3e4

2π2λ

�

1
ε

�

=
�

5λ
16π2

+
−3e2

4π2
+

3e4

2π2λ

�

1
ε

(3.130)

so that
L1(e ,λ) =

5λ
16π2

+
−3e2

4π2
+

3e4

2π2λ
(3.131)

and the beta function

βλ(α,λ) =
5λ2

16π2
− 3e2λ

4π2
+

3e4

2π2
. (3.132)

3.2.8 Anomalous dimensions

For anomalous dimension of the electromagnetic field, proceeding as before

γA(e ,λ) =
1
2

d lnZ3

d lnµ
=

e2

48π2
. (3.133)

Similarly, for anomalous dimension of scalar field, we have

γφ(e ,λ) =
1
2

d lnZ2

d lnµ
=− 3e2

16π2
. (3.134)

Finally, for anomalous dimension of mass, we need

B(e ,λ) = ln
�

Z1/2
M Z−1/2

2

�

=
�

λ

16π2
− 3e2

16π2

�

1
ε
+O(ε−2) (3.135)

and therefore

γM (e ,λ) =
� e

2
∂

∂ e
+λ

∂

∂ λ

�

B1(e ,λ) =
λ

16π2
− 3e2

16π2
. (3.136)
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Chapter 4

Nonabelian Gauge Theory

In the minimal prescription of electrodynamics, matter is coupled to the gauge
field by requiring the Lagrangian to be manifestly invariant under a local gauge trans-
formation. Consider a set of N fieldsφ j (x) in an N -dimensional representation R of
the gauge group. A local gauge transformation is given by

φ j (x)→ exp
�

−i gΓ a(x)T a
R

� k
j φk (x), (4.1)

where g is a dimensionless constant, and T a
R are generators of the group in its N -

dimensional representation R. Indices j , k which correspond to a representation of
the gauge group are called color indices.

A Lagrangian that is invariant under a global transformation of the gauge group can
be made to respect the local symmetry by replacing the ordinary derivative by a gauge
covariant derivative

Dµ = ∂µ− i gAa
µT a

R , (4.2)

whereAa
µ(x) are a set of gauge fields, and color indices are supressed. A gauge invariant

Lagrangian for just the gaugefield, also called aYang-Mills Lagrangian is givenby

LYM =−
1
4

GeµνGe
µν , (4.3)

where Ge
µν = ∂µAe

ν − ∂νAe
µ, is the field strength tensor for the gauge field Ae

µ(x). With
Gc
µν = ∂µAc

ν − ∂νAc
µ + g f ab c Aa

µAb
ν (where f ab c are structure factors for the gauge

group), kinetic term for the gauge field can be expanded,

−1
4

GeµνGe
µν =−

1
2
∂ µAeν∂µAe

ν +
1
2
∂ µAeν∂νA

e
µ

− g f ab e AaµAb ν∂µAeν − 1
4

g 2 f ab e f cd e AaµAb νAc
µAd

ν . (4.4)

By doing an integration-by-parts on the first two terms and throwing away the surface
integral, we have

−1
4

GeµνGe
µν =+

1
2

Aeµ(gµν∂
2− ∂µ∂ν )A

eν

− g f ab e AaµAb ν∂µAeν − 1
4

g 2 f ab e f cd e AaµAb νAc
µAd

ν . (4.5)
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To quantize the gauge field, we need to gauge-fix by adding ghosts

Lgh =−∂
µ c̄ b D b c

µ c c

=−∂ µ c̄ c∂µc c + g f ab c Aa
µ∂

µ c̄ b c c , (4.6)

and a gauge fixing term

Lgf =−
1
2
ξ −1∂ µAc

µ∂
νAc
ν =+

1
2
ξ −1Acµ∂µ∂νA

cν , (4.7)

where for the second equalitywehave done an integration-by-parts. Putting everything
together, we have a quantum variant of the Yang-Mills Lagrangian

LYM+ Lgh+ Lgf =
1
2

Aeµ(gµν − ∂µ∂ν )A
eν +

1
2
ξ −1Aeµ∂µ∂νA

eν − ∂ µ c̄a∂µca

− g f ab c AaµAb ν∂µAc
ν −

1
4

g 2 f ab e f cd e AaµAb νAc
µAd

ν

+ g f ab c Ac
µ∂

µ c̄a c b . (4.8)

Calculations leading up to the calculation of the beta function in nonabelian gauge
theory with spinors has been adapted from Srednicki.

4.1 Coupled to spinors

As before coupling to spinors occurs by replacing the ordinary derivative with the
partial derivative.

Lfermion = iψ̄i
I 6D

j
i ψ j I −mI ψ̄

i
Iψi I , (4.9)

where I is the flavour index. In quantum chromodynamics, the gauge group is SU(3)
and quarks are in its fundamental representation. As a result, each quark comes in
three colours. There are six flavours, and each flavour has a different mass.

Expanding out the kinetic term, we have

iψ̄i
I 6D

j
i ψ j I = iψ̄i

I 6∂ ψi I + gAa
µ(T

a
R)

j
i ψ̄

i
I γ
µψ j I , (4.10)

where the index on a runs from 1 to D(A), the index on i , j runs from 1 to D(R)
and the index on I runs from 1 to nF

1. In quantum chromodynamics, D(A) = 8,
D(R) = 3 and nF = 6.

1D(R) is the dimension of the representation R of the gauge group, A stands for its adjoint represen-
tation, and nF is the number of fermions in the theory
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Putting everything together and adding appropriate renormalizing Z factors for loop
calculations, we have

L0 =+
1
2

Aaµ(gµν∂
2− ∂µ∂ν )A

aν +
1
2
ξ −1Aaµ∂µ∂νA

aν − ∂ µ c̄a∂µca

+ iψ̄i
I 6∂ ψi I −ZmI mI ψ̄

i
Iψi I (4.11)

L1 =−Z3g g f ab c AaµAb ν∂µAc
ν −

1
4

Z4g g 2 f ab e f cd e AaµAb νAc
µAd

ν

+Z1′ g f ab c Aa
µ∂

µ c̄ c c b +Z1I gAa
µ(T

a
R)

j
i ψ̄

i
I γ
µψ j I + Lct, (4.12)

Lct =+
1
2
(Z3− 1)Aaµ(gµν∂

2− ∂µ∂ν )A
aν

− (Z2′ − 1)∂ µ c̄a∂µca + i(Z2I − 1)ψ̄i I 6∂ ψi I − (ZmI − 1)mI ψ̄i Iψi I . (4.13)

4.1.1 Corrections to the gluon propagator

At one loop, the gluon propagator is corrected by the following five diagrams.

k

l

k

k

l + k

l

k

k

k + l

l

k k
k + l

l

k k k

Figure 4.1: One loop corrections to the gluon propagator in spinor gauge theory.

The first diagram is proportional to
∫

d 4 l/l 2. However, this integral vanishes after
dimensional regularization.

∫

d 4 l
(2π)4

1
l 2
→ µ̃ε
∫

d d l
(2π)d

1
l 2+m2

g
, (4.14)
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where we have introduced an infrared cutoff mg , for “gluon mass”.

µ̃ε
∫

d d l
(2π)d

1
l 2+m2

g
=

iµ̃ε

(4π)d/2
Γ
�

1− d
2

�

m−2(1−d/2)
g

=
i m2

g

(4π)2
Γ
�

−1+
ε

2

�

�

4πµ̃2

m2
g

�ε/2

=
−i m2

g

16π2

�

2
ε
− γ + 1
�

�

1+
ε

2
ln

�

4πµ̃2

m2
g

��

=
−i m2

g

16π2

�

2
ε
+ 1− ln

m2
g

µ2

�

, (4.15)

which vanishes as mg → 0.

For the second diagram, we have

iΠab
µν, gluon loop(k)

=
1
2

�

1
i

�2∫ d 4 l
(2π)4

gασ gβρiVb cd
νρσ (k ,−k − l , l )iVad cσρ

µαβ
(−k ,−l , k + l )

l 2(l + k)2
, (4.16)

where

iVab c
µνρ(p, q , r ) = g f ab c[(q − r )µ gνρ+(r − p)ν gρµ+(p − q)ρ gµν] (4.17)

is the factor associated with the three gluon vertex. We can expand the numera-
tor,

gασ gβρiVb cd
νρσ (k ,−k − l , l )iVad c

µαβ(−k ,−l , k + l )

= g 2 f b cd f ad c[(−k − 2l )ν gρσ +(−k + l )ρ gνσ +(2k + l )σ gνρ]

[(−k − 2l )µ gσρ+(2k + l )σδρµ+(−k + l )ρδσµ]. (4.18)

Colour factors simplify as

f b cd f ad c =−(−i f b cd )(−i f ad c )

=−(T b
A )

cd (T a
A)

d c

=−Tr
�

T b T a
�

=−T (A)δab , (4.19)

and we write

gασ gβρiVb cd
νρσ (k ,−k − l , l )iVad c

µαβ(−k ,−l , k + l ) =−g 2T (A)δab Nµν , (4.20)

where

Nµν = [(−k − 2l )ν gρσ +(−k + l )ρ gνσ +(2k + l )σ gνρ]

×[(−k − 2l )µ gσρ+(2k + l )σδρµ+(−k + l )ρδσµ]. (4.21)
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We express the denominator as an integral over Feynman parameters,

1
l 2(l + k)2

=
∫

d x
1

(q2+D)2
, (4.22)

where q = l + xk and D = x(1− x)k2, and write Nµν in terms of q ,

Nµν = [(2q +(1− 2x)k)ν gρσ +(−q +(1+ x)k)ρ gνσ +(−q − (2− x)k)σ gνρ]

[(2q +(1− 2x)k)µ gρσ +(−q − (2− x)k)σδρµ+(−q +(1+ x)k)ρδσµ]

= 4qµqν gρσ gρσ − 2qνq
σ gρσδ

ρ
µ− 2qνq

ρ gρσδ
σ
µ − 2qρqµ gνσ gρσ + qρqσ gνσδ

ρ
µ

+ qρqρ gνσδ
σ
µ − 2qσqµ gνρ gρσ + qσqσ gνρδ

ρ
µ+ qσqρ gνρδ

σ
µ

+(1− 2x)2kµkν gρσ gρσ − (1− 2x)(2− x)kνk
σ gρσδ

ρ
µ

+(1− 2x)(1+ x)kνk
ρ gρσδ

σ
µ +(1− 2x)(1+ x)kρkµ gρσ gνσ

− (1+ x)(2− x)kρkσ gνσδ
ρ
µ+(1+ x)2kρkρ gνσδ

σ
µ

− (2− x)(1− 2x)kσkµ gνρ gρσ +(2− x)2kσkσ gνρδ
ρ
µ

− (2− x)(1+ x)kσkρ gνρδ
σ
µ + terms linear in q (4.23)

= 4d qµqν − 2qµqν − 2qµqν − 2qµqν + qµqν + q2 gµν − 2qµqν + q2 gµν + qµqν
+(4x2− 4x + 1)d kµkν − (2x2− 5x + 2)kµkν +(−2x2− x + 1)kµkν
+(−2x2− x + 1)kµkν − (−x2+ x + 2)kµkν +(x

2+ 2x + 1)k2 gµν
− (2x2− 5x + 2)kµkν +(x

2− 4x + 4)k2 gµν − (−x2+ x + 2)kµkν (4.24)

= (4d − 6)qµqν + 2q2 gµν +((4d − 6)x2− (4d − 6)x − (6− d ))kµkν
+(2x2− 2x + 5)k2 gµν . (4.25)

To simplify, we dropped terms linear in q and used gµν gµν = d . Moreover, we can
make the replacements qµqν → d−1 gµνq

2 and q2→ (2/d−1)−1D withD = x(1−x)k2,
such that

Nµν = 10qµqν + 2q2 gµν +(2x2− 2x + 5)k2 gµν +(10x2− 10x − 2)kµkν

→ 9
2

q2 gµν +(2x2− 2x + 5)k2 gµν +(10x2− 10x − 2)kµkν

→ (11x2− 11x + 5)k2 gµν +(10x2− 10x − 2)kµkν . (4.26)

Aswe are only interested in the divergent part of the integral, we put d = 4 throughout.
Putting everything together, we have

iΠab
µν , gluon loop(k) =

1
2

g 2T (A)δab
∫

d xNµν

∫

d d q
(2π)d

µ̃ε

(q2+D)2

=
1
2

g 2T (A)δab
�

19
6

k2 gµν −
11
3

kµkν

�� i
8π2

1
ε
+ · · ·
�

i g 2

16π2
T (A)δab
�

19
6

k2 gµν −
11
3

kµkν

��

1
ε
+ · · ·
�

(4.27)
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For the third diagram, we have

iΠab
µν , ghost loop(k) = (−1)

�

1
i

�2∫ d 4 l
(2π)4

iVacd
µ (l + k , l )iVb d c

ν (l , l + k)

l 2(l + k)2
, (4.28)

where
iVab c

µ (q , r ) = g f ab c qµ, (4.29)

is the factor associated with the ghost-gluon-ghost vertex. We expand the numera-
tor,

iVacd
µ (l + k , l )iVb d c

ν (l , l + k) = g 2 f acd f b d c (l + k)µ lν . (4.30)

Simplify the colour factor by

f acd f b d c =−(−i f acd )(−i f b d c )

=−(T a
A)

cd (T b
A )

d c

=−TrT a
AT b

A

=−T (A)δab , (4.31)

so that
iVacd

µ (l + k , l )iVb d c
ν (l , l + k) =−g 2T (A)δab Nµν , (4.32)

where Nµν = (l + k)µ lν . Write the denominator as an integral over Feynman parame-
ters,

1
l 2(l + k)2

=
∫

d x
1

(q2+D)2
, (4.33)

where q = l + xk and D = x(1− x)k2, and write the numerator in terms of q ,

Nµν = qµqν − x(1− x)kµkν + terms linear in q . (4.34)

Make replacements qµqν → d−1q2 gµν , q2→ (2/d − 1)−1D and drop terms linear in q
to get

Nµν →−
1
2

x(1− x)k2 gµν − x(1− x)kµkν . (4.35)

Putting everything together,

iΠab
µν , ghost loop(k) =−g 2T (A)δab

∫

d xNµν

∫

d d q
(2π)d

µ̃ε

(q2+D)

=−g 2T (A)δab
�

− 1
12

k2 gµν −
1
6

kµkν

�� i
8π2

1
ε
+ · · ·
�

=
i g 2

8π2
T (A)δab
�

1
12

k2 gµν +
1
6

kµkν

��

1
ε
+ · · ·
�

. (4.36)
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For the fourth diagram, we have

iΠab
µν, fermion loop(k)

= (−1)(i g )2
�

1
i

�2
Tr
�

T b
R T a

R

�

∫

d 4 l
(2π)4

Tr
�

γν (−6 l −6k +m)γµ(−6 l +m)
�

(l 2+m2)((l + k)2+m2)
.

Other than the colour factor Tr
�

T b
R T a

R

�

= T (R)δab , the expression is identical to the
similar electrodynamics diagram. Moreover, if the theory has nF families of fermions,
then each of the fermions will contribute with a loop. Each of these contributions
will be identical. As a result, we have

iΠab
µν , fermion loop(k) =−

i g 2

6π2
T (R)nFδ

ab
�

k2 gµν − kµkν
�

�

1
ε
+ · · ·
�

. (4.37)

Counterterm contribution to the gluon propagator is

Πab
µν , ct =−(Z3− 1)(k2 gµν − kµkν )δ

ab = δab (k2 gµν − kµkν )Πct(k
2) (4.38)

Summing all the contributions, we have

Πab
µν , loops(k) =

g 2

8π2
δab
�

5
3

T (A)− 4
3

nF T (R)
�

(k2 gµν − kµkν )
�

1
ε
+ · · ·
�

= δab (k2 gµν − kµkν )Πloops(k
2) (4.39)

and finally,

Π(k2) =Πloops(k
2)+Πct(k

2)

=
�

5
3

T (A)− 4
3

nF T (R)
� g 2

8π2

1
ε
− (Z3− 1). (4.40)

For Π(k2) to be finite, we must have

Z3 = 1+
�

5
3

T (A)− 4
3

nF T (R)
� g 2

8π2

1
ε
+O(g 4). (4.41)

4.1.2 Corrections to the fermion propagator

At one loop, the fermion receives corrections from the following diagrams.

p

l

p + l

p
j i

p p
j i

Figure 4.2: One loop corrections to the fermion propagator in spinor gauge theory.
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For the first diagram, we have

iΣloop(6 p) = (i g )2
�

1
i

�2
(T a

RT a
R)i j

∫

d 4 l
(2π)4

γ ν (−6 l −6 p +m)γν
l 2((l + p)2+m2)

. (4.42)

Other than the colour factor (T aT a)i j =C (R)δi j , the expression is identical to the
similar electrodynamics diagram,

iΣloop(6 p) =−C (R)δi j (6 p + 4m)
i g 2

8π2

1
ε

. (4.43)

With the counterterm, we have

Σ(6 p) =−(Z2− 1)6 pδi j − (Zm − 1)mδi j −C (R)δi j (6 p + 4m)
g 2

8π2

1
ε

. (4.44)

Absorbing divergences in the Z factors, we have

Z2 = 1−C (R)
g 2

8π2

1
ε
+O(g 4) and Zm = 1−C (R)

g 2

2π2

1
ε
+O(g 4). (4.45)

Each family of fermions will receive an identical contribution to the divergent part of
the Z factors.

4.1.3 Corrections to the vertex

At one loop, the fermion-fermion-gluon vertex receives corrections from the following
diagrams.

p1

p1+ lp2+ l

p2
l

k

ji

a,µ

p1
lp2

l − p1l − p2

k

ji

a,µ

Figure 4.3: One loop contribution to the spinor-spinor-gluon vertex in spinor gauge
theory.

For the first diagram, we have

iVaµ
i j , 1 = (i g )3
�

1
i

�3
(T b

R T a
RT b

R )i j

∫

d 4 l
(2π)4

γ ν (−6 l +m)γµ(−6 l +m)γν
l 2(l 2+m2)(l 2+m2)

(4.46)
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As the divergent part of the diagram is independent of the external momenta, we have
set p1 = p2 = k = 0. Apart from the colour factor,

T b
R T a

RT b
R = ([T

b
R ,T a

R]+T a
RT b

R )T
b

R

= i f bac T c
RT b

R +T a
R(T

b
R T b

R )

=
1
2

i f bac[T c
R,T b

R ]+C (R)T a
R

=−1
2

f bac f c b d T d
R +C (R)T a

R

=−1
2
(−i f ab c )(−i f d c b )T d

R +C (R)T a
R

=−1
2

Tr
�

T a
AT d

A

�

T d
R +C (R)T a

R

=−1
2

T (A)δad T d
R +C (R)T a

R

=
�

C (R)− 1
2

T (A)
�

T a
R , (4.47)

the diagram is identical to the similar diagram in electrodynamics, and we have

iVaµ
i j , 1 =
�

C (R)− 1
2

T (A)
�

γµ(T a
R)i j

i g 3

8π2

1
ε

= i gγµ(T a
R)i j

�

C (R)− 1
2

T (A)
� g 2

8π2

1
ε

. (4.48)

For the second diagram, we have

iVaµ
i j , 2 = (i g )2
�

1
i

�3
(T b

R T c
R)i j

∫

d 4 l
(2π)4

iVab cµνρ(k ,−l , l )γν (−6 l +m)γρ
l 2 l 2(l 2+m2)

, (4.49)

where

iVab cµνρ(p, q , r ) = g f ab c
�

(q − r )µ g νρ+(r − p)ν gρµ+(p − q)ρ gµν
�

. (4.50)

Again, as we are only interested in the diverging part of the integral, we have set
p1 = p2 = k = 0. Expanding the numerator, we have

(T b
R T c

R)i j iV
ab cµνρ(k ,−l , l )γν (−6 l +m)γρ
= g (T b

R T c
R)i j f ab c[−2lµ g νρ+(l − k)ν gρµ+(l + k)ρ gµν]γν (−6 l +m)γρ

= g (T b
R T c

R)i j f ab c Nµ. (4.51)
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The colour factor is simplifies as

f ab c T b
R T c

R =
1
2

f ab c[T b
R ,T c

R]

=
1
2

i f ab c f b ce T e
R

=
1
2

i(−i f ab c )(−i f ec b )T e
R

=
1
2

i Tr
�

T a
AT e

A

�

T e
R

=
1
2

iT (A)T a
R . (4.52)

To simplify Nµ we only keep terms quadratic in l , because we are interested only in
the diverging part of the integral,

Nµ = [−2lµ g νρ+(l − k)ν gρµ+(l + k)ρ gµν]γν (−6 l +m)γρ
= 2lµγν6 lγ

ν −6 l6 lγµ−6 l6 lγµ

= 2(d − 2)lµ6 l + 2l 2γµ

→
2(d − 2)

d
l 2γµ+ 2l 2γµ, (4.53)

where we used γν6aγ ν = (d − 2)6a and lµ lν → d−1 l 2 gµν . Since we are interested only in
the divergent part of the integral, we put d = 4 and

Nµ→ 3l 2γµ. (4.54)

Putting everything together, we have

iVaµ
i j , 2 =

3
2
(i g )3
�

1
i

�3
T (A)(T a

R)i jγ
µ
∫

d 4 l
(2π)4

l 2

l 2 l 2(l 2+m2)

=
3
2

g 3T (A)(T a
R)i jγ

µ
� i

8π2

1
ε
+ · · ·
�

= i gγµ(T a
R)i j T (A)

3g 2

16π2

�

1
ε
+ · · ·
�

. (4.55)

Finally,

iVaµ
i j = iZ1 gγµ(T a

R)i j + iVaµ
i j , 1+ iVaµ

i j , 2

= i gγµ(T a
R)i j

�

Z1+[C (R)+T (A)]
g 2

8π2

1
ε

�

, (4.56)

and absorbing the divergence in Z1 gives

Z1 = 1− [C (R)+T (A)]
g 2

8π2

1
ε
+O(g 4). (4.57)
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4.1.4 Beta function

Relations between bare and renormalized parameters and fields for nonabelian gauge
theory is the same as in electrodynamics. In particular,

m0 = Z−1
2 Zm m, (4.58)

g0 = Z−1/2
3 Z−1

2 Z1 g . (4.59)

If we define α= g 2/4π, then

α0 = Z−1
3 Z−2

2 Z2
1α. (4.60)

Let G(α,ε) = ln
�

Z−1
3 Z−2

2 Z2
1

�

, then G can be expressed as a power series in 1/ε,

G(α,ε) =
∞
∑

n=1

Gn(α)
εn

. (4.61)

By the analysis of the previous section,

da
d lnµ

=−εα+β(α), (4.62)

where
β(α) = α2G′1(α). (4.63)

We have calculated the Z factors to one-loop,

Z1 = 1− [C (R)+T (A)]
α

2π
1
ε
+O(α2) (4.64)

Z2 = 1−C (R)
α

2π
1
ε
+O(α2) (4.65)

Zm = 1−C (R)
2α
π

1
ε
+O(α2) (4.66)

Z3 = 1+
�

5
3

T (A)− 4
3

nF T (R)
�

α

2π
1
ε
+O(α2). (4.67)

Using the values of Z factors above,

G(α,ε) = lnZ−1
3 Z−2

2 Z2
1

= ln
�

1−
�

5
3

T (A)− 4
3

nF T (R)
�

α

2πε

�
�

1+C (R)
α

πε

��

1− [C (R)+T (A)]
α

πε

�

=
�

−
�

5
3

T (A)− 4
3

nF T (R)
�

α

2π
+C (R)

α

π
−C (R)

α

π
−T (A)

α

π

�

1
ε
+ · · ·

=
�

−11
3

T (A)+
4
3

nF T (R)
�

α

2π
1
ε
+ · · · , (4.68)

so that
G1(α) =
�

−11
3

T (A)+
4
3

nF T (R)
�

α

2π
+O(α2), (4.69)
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and the beta function,

β(α) =−
�

11
3

T (A)− 4
3

nF T (R)
�

α2

2π
+O(α3) (4.70)

or equivalently,

β(g ) =−
�

11
3

T (A)− 4
3

nF T (R)
� g 3

16π2
+O(g 5). (4.71)

4.1.5 Anomalous dimension of mass

Anomalous dimension of mass is defined as

γm(α) =
d ln m
d lnµ

. (4.72)

By the analysis of previous section, if A(α,ε) = lnZ−1
2 Zm , then

A(α,ε) =
∞
∑

n=1

An(α)
εn

, (4.73)

and the anomalous dimension is given by,

γm(α) = αA′1(α). (4.74)

With Z factors as above, we have

A(α,ε) = lnZ−1
2 Zm

= ln
�

1+C (R)
α

2π
1
ε

��

1−C (R)
2α
π

1
ε

�

=−C (R)
3α
2π

1
ε
+ · · · , (4.75)

so that
A1(α) =−C (R)

3α
2π
+O(α2), (4.76)

and
γm(α) =−C (R)

3α
2π
+O(α2) (4.77)
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4.1.6 Anomalous dimension of fields

Anomalous dimension of the field is defined as

γψ(α) =
1
2

d lnZ2

d lnµ

=
1
2
∂ lnZ2

∂ α

dα
d lnµ

=
1
2
∂

∂ α

�

−C (R)
α

2π
1
ε

�

(−εα+β(α))

=C (R)
α

4π
+O(α2). (4.78)

Similarly for the gauge field, we have

γA(α) =
1
2

d lnZ3

d lnµ

=
1
2
∂ lnZ3

∂ α

dα
d lnµ

=
1
2
∂

∂ α

��

5
3

T (A)− 4
3

nF T (R)
�

α

2π
1
ε

�

(−εα+β(α))

=−
�

5
3

T (A)− 4
3

nF T (R)
�

α

4π
+O(α2). (4.79)

4.2 Coupled to scalars

As before, we start with a manifestly gauge covariant Lagrangian for complex scalar
fields in a representation R of the gauge group,

Lscalar =−(D
µφ)† j (Dµφ) j −M 2φ† jφ j −

1
4
λφ†iφiφ

† jφ j . (4.80)

We have (Dµφ)† j = ∂ µφ† j + i gφ†kAa
µ(T

a
R)

k
j , and therefore

(Dµφ)† j Dµφ j

=−i gAa
µ

�

(∂ µφ† j )(T a
R)

k
j φk −φ

† j (T a
R)

k
j (∂

µφk )
�

+ g 2AaµAb
µφ

†k (T a
RT b

R )
l

kφl .
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After expanding the kinetic term for gauge fields, adding a gauge fixing term, ghosts,
inserting appropriateZ factors and organizing theLagrangian as before, we have

L0 =+
1
2

Aaµ(gµν∂
2− ∂µ∂ν )A

aν +
1
2
ξ −1Aaµ∂µ∂νA

aν − ∂ µ c̄a∂µca

− ∂ µφ† j∂µφ j −M 2φ† jφ j (4.81)

L1 =−Z3g g f ab c AaµAb ν∂µAeν − 1
4

Z4g g 2 f ab e f cd e AaµAb νAc
µAd

ν

+Z1′ g f ab c Aa
µ∂

µ c̄ b c c + i gZ1Aa
µ

�

(∂ µφ† j )(T a
R)

k
j φk −φ

† j (T a
R)

k
j (∂

µφk )
�

−Z4g g 2AaµAb
µφ

† j (T a
RT b

R )
k
j φk −

1
4

Zλλφ
† jφ jφ

†kφk + Lct (4.82)

Lct =+
1
2
(Z3− 1)Aaµ(gµν − ∂µ∂ν )A

aν − (Z2′ − 1)∂ µ c̄a∂µca

− (Z2− 1)∂ µφ† j∂µφ j − (ZM − 1)M 2φ† jφ j , (4.83)

so that the complete Lagrangian, L= L0+ L1.

4.2.1 Corrections to the gluon propagator

We have the following diagrams correcting the gluon propagator in scalar nonabelian
gauge theory.

k

l

l + k
k k

l

k k

l

l + k

k

k

l

k k

l

l + k

k k k

Figure 4.4: One loop corrections to the gluon propagator in scalar gauge theory.

The third, fourth and fifth diagrams are evaluated exactly as with spinor fields. Third
diagram gives

iΠab
µν, gluon loop(k) =

i g 2

16π2
T (A)δab
�

19
6

k2 gµν −
11
3

kµkν

��

1
ε
+ · · ·
�

, (4.84)

the fourth diagram vanishes, and the fifth diagram gives

iΠab
µν , ghost loop(k) =

i g 2

8π2
T (A)δab
�

1
12

k2 gµν
1
6

kµkν

��

1
ε
+ · · ·
�

. (4.85)
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Adding up the two contributions,

iΠab
µν , gluon loop+ iΠab

µν , ghost loop = T (A)
5i g 2

24π2

1
ε
δab
�

k2 gµν − kµkν
�

. (4.86)

For the first two diagrams, we have

iΠab
µν , scalar loop =(i g )2 Tr

�

T a
RT b

R

�

�

1
i

�2∫ d 4 l
(2π)4

(2l + k)µ(2l + k)ν

(l 2+M 2)((l + k)2+M 2)

+ (−i g 2)2Tr
�

T a
RT b

R

�

�

1
i

�
∫

d 4 l
(2π)4

1
l 2+M 2

. (4.87)

Other than a color factor ofTr
�

T a
RT b

R

�

= T (R)δab , the integrals are identical to similar
ones in scalar electrodynamics. Therefore

iΠab
µν , scalar loop =−T (R)

i g 2

24π2

1
ε
δab (k2 gµν − kµkν ). (4.88)

We notice that Πab
µν = Π(k

2)δab (k2 gµν − kµkν ). Putting everything together, we
have

Π(k2)1 loop =Π(k
2)loop+Π(k

2)ct

=
�

5
3

T (A)− 1
3

T (R)
� g 2

8π2

1
ε
− (Z3− 1)+O(ε0). (4.89)

To cancel the divergence

Z3 = 1+
�

5
3

T (A)− 1
3

T (R)
� g 2

8π2

1
ε

. (4.90)

4.2.2 Corrections to the scalar propagator

At one loop, the following diagrams contribute to the scalar propagator.

k

l

k k

l

l + k

k k

l

k k k

Figure 4.5: One loop corrections to the scalar propagator in scalar gauge theory.
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The first diagram is exactly the same as for scalar electrodynamics (and pure p hi4-
theory). Integrals for the second and third diagrams are

iΠ(k2) j
i = δ

j
i (· · · )

+ (T a
RT a

R)
j

i (i g )2
�

1
i

�2∫ d 4 l
(2π)4

(l + 2k)µPµν (l )(l + 2k)ν

l 2((l + k)2+M 2)
(4.91)

+ 2(T a
RT a

R)
j

i (−i g 2)
�

1
i

�
∫

d 4 l
(2π)4

gµνP
µν (l )

l 2+m2
g

(4.92)

− i(Z2− 1)k2− i(ZM − 1)M 2 (4.93)

Other than a color factor, the integrals are same as the ones encountered in scalar
electrodynamics. The third integral vanishes in the mg → 0 limit. Simplifying the
color factor (T a

RT a
R)

j
i =C (R)δ j

i , and using previous results, we have

Π(k2) j
i =
�

C (R)
3g 2k2

8π2
+
λM 2

8π2

�

1
ε
− (Z2− 1)k2− (ZM − 1)M 2, (4.94)

so that to keep Π(k2) finite, we must have

Z2 = 1+C (R)
3g 2

8π2

1
ε

and ZM = 1+
λ

8π2

1
ε

. (4.95)

4.2.3 Corrections to the scalar-scalar-gluon vertex

At one loop, we have the following corrections.

l

k

l

l + k
l

k

l − k

l

l

l

k
l

l + k

k

l

l + k
k

k

l

l

Figure 4.6: One loop corrections to the scalar-scalar-gluon vertex in scalar gauge
theory.

The first, fourth, fifth and sixth diagrams will be proportional to their counterparts
in scalar electrodynamics. Hence, the first, fourth and sixth diagrams vanish. In the
second diagram there is a vertex in which an external scalar with zero momentum is
connected to an internal gluon with momentum l . This would lead to a factor of
i g l νPνρ(l ), and the corresponding integral vanishes.
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For the third diagram, the three gluon vertex will give a factor of f ab c and the gluon
scalar-scalar-gluon-gluon vertex will give the color factor (T a

RT b
R +T a

RT b
R ). We note

that f ab c is antisymmetric in indices a, b while T a
RT b

R +T a
RT b

R is symmetric, hence
this diagram will vanish as well.

Finally, consider thefifthdiagram. ApplyingFeynman rules to this diagramgives

(−i g 2)(i g )T b
R (T

a
RT b

R +T b
R T a

R)
�

1
i

�
∫

d 4 l
(2π)4

Pµν (l )(l + 2k)ν
l 2((l + k)2+M 2)

. (4.96)

Other than the color factor,

T b
R (T

a
RT b

R +T b
R T a

R) = T b
R T a

RT b
R +T b

R T b
R T a

R

=
�

C (R)− 1
2

T (A)
�

T a
R +C (R)T a

R

= 2
�

C (R)− 1
4

T (A)
�

T a
R , (4.97)

the integral is otherwise identical to the one encountered in scalar electrodynamics.
Therefore, we have

iVaµ
3 = iZ1 gT a

R kµ−
�

C (R)− 1
4

T (A)
�

T a
R

3i g 3kµ

8π2

1
ε

, (4.98)

and therefore
Z1 = 1+
�

C (R)− 1
4

T (A)
�3g 2

8π2

1
ε

. (4.99)

4.2.4 Beta function

For reference, the Z factors for snonabelian gauge theory are

Z1 = 1+
�

C (R)− 1
4

T (A)
�3g 2

8π2

1
ε

(4.100)

Z2 = 1+C (R)
3g 2

8π2

1
ε

(4.101)

Z3 = 1+
�

5
3

T (A)− 1
3

T (R)
� g 2

8π2

1
ε

(4.102)

ZM = 1+
λ

8π2

1
ε

. (4.103)

(4.104)

As in scalar electrodynamics, the beta function is given by

β(g ) = g
�

g
2
∂

∂ g
+λ

∂

∂ λ

�

G1(g ,λ), (4.105)

where G(g ,λ) = ln
�

Z−1/2
3 Z−1

2 Z1

�

, and G1 is the coefficient of 1/εwhen it is written
as a power series in ε−1.
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Computing G we have

ln
�

Z−1/2
3 Z−1

2 Z1

�

=−1
2

lnZ3− lnZ2+ lnZ1

=
�

−5
6

T (A)+
1
6

T (R)− 3C (R)+ 3C (R)− 3
4

T (A)
� g 2

8π2

1
ε

=−
�

19
3

T (A)− 1
3

T (R)
� g 2

16π2

1
ε
+O(ε−2), (4.106)

and therefore the beta function

βg (g ) =−
�

19
3

T (A)− 1
3

T (R)
� g 2

16π2
. (4.107)

4.2.5 Anomalous dimensions

For anomalous dimension of the gauge field, we proceed as before

γA(g ,λ) =
1
2

d lnZ3

d lnµ
= [T (R)− 5T (A)]

g 2

48π2
. (4.108)

And similarly, the anomalous dimension of scalar field

γφ(g ,λ) =
1
2

d lnZ2

d lnµ
=−C (R)

3g 2

16π2
. (4.109)

Finally, for the anomalous dimension of mass, we need

B(g ,λ) = ln
�

Z1/2
M Z−1/2

2

�

=
�

λ

16π2
−C (R)

3g 2

16π2

�

1
ε
+O(ε−2) (4.110)

and
γM (g ,λ) =
�

g
2
∂

∂ g
+λ

∂

∂ λ

�

B1(g ,λ) =
λ

16π2
−C (R)

3g 2

16π2
. (4.111)



Chapter 5

Summary

All the results derived in preceeding chapters are repeated here once again for refer-
ence.

Scalar field renormalization

φ3 theory in d = 6, Zφ = 1− κ2

384π3

1
ε

φ4 theory in d = 4, Zφ = 1+O(λ2)

Yukawa theory, Zφ = 1−
g 2

4π2

1
ε

Scalar electrodynamics, Z2 = 1+
3e2

8π2

1
ε

Scalar gauge theory, Z2 = 1+C (R)
3g 2

8π2

1
ε

Anomalous dimension of scalar field

φ3 theory in d = 6, γφ =
κ2

384π3

φ4 theory in d = 4, γφ =O(λ2)

Yukawa theory, γφ =
g 2

8π2

Scalar electrodynamics, γφ =−
3e2

8π2

Scalar gauge theory, γφ =−C (R)
3e2

8π2
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Scalar mass renormalization

φ3 theory in d = 6, ZM = 1− κ2

64π3

1
ε

φ4 theory in d = 4, ZM = 1+
λ

16π2

1
ε

Yukawa theory, ZM = 1+
�

λ

16π2
+

κ2

16π2M 2
−

3g 2m2

2π2M 2

�

1
ε

Scalar electrodynamics, ZM = 1+
λ

8π2

1
ε

Scalar gauge theory, ZM = 1+
λ

8π2

1
ε

Anomalous dimension of scalar mass

φ3 theory in d = 6, γM =−
5κ2

768π3

φ4 theory in d = 4, γM =
λ

32π2

Yukawa theory, γM =
λ

32π2
+

κ

32π2M 2
+
�

1− 6m2

M 2

�

g 2

8π2

Scalar electrodynamics, γM =
λ

16π2
− 3e2

8π2

Scalar gauge theory, γM =
λ

16π2
−C (R)

3e2

8π2

Spinor field renormalization

Yukawa theory, Zψ = 1−
g 2

16π2

1
ε

Spinor electrodynamics, Z2 = 1− e2

8π2

1
ε

Spinor gauge theory, Z2 = 1−C (R)
g 2

8π2

1
ε

Anomalous dimension of spinor field

Yukawa theory, γψ =
g 2

32π2

Spinor electrodynamics, γψ =
e2

8π2

Spinor gauge theory, γψ =C (R)
g 2

16π2
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Spinor mass renormalization

Yukawa theory, Zm = 1+
g 2

8π2

1
ε

Spinor electrodynamics, Zm = 1− e2

2π2

1
ε

Spinor gauge theory, Zm = 1−C (R)
g 2

2π2

1
ε

Anomalous dimension of spinor mass

Yukawa theory, γm =+
g 2

16π2

Spinor electrodynamics, γm =−
3e2

8π2

Spinor gauge theory, γm =−C (R)
3g 2

8π2

Gauge field renormalization

Spinor electrodynamics, Z3 = 1− e2

6π2

1
ε

Scalar electrodynamics, Z3 = 1− e2

24π2

1
ε

Spinor gauge theory, Z3 = 1+
�

5
3

T (A)− 4
3

T (R)
� g 2

8π2

1
ε

Scalar gauge theory, Z3 = 1+
�

5
3

T (A)− 1
3

T (R)
� g 2

8π2

1
ε

Anomalous dimension of gauge field

Spinor electrodynamics, γA=
e2

6π2

Scalar electrodynamics, γA=
e2

48π2

Spinor gauge theory, γA=−
�

5
3

T (A)− 4
3

T (R)
� g 2

16π2

Scalar gauge theory, γA=−(5T (A)−T (R))
g 2

48π2
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Coupling renormalization

φ3 theory in d = 6, Zκ = 1− κ2

64π3

1
ε

φ4 theory in d = 4, Zλ = 1+
3λ

16π2

1
ε

Yukawa interaction, Zg = 1+
g 2

8π2

1
ε

φ3 coupling in Yukawa theory, Zκ = 1+
�

3λ
16π2
−

3m g 3

π2κ

�

1
ε

φ4 coupling in Yukawa theory, Zλ = 1+
�

3λ
16π2
−

3g 4

π2λ

�

1
ε

Spinor electrodynamics, Z1 = 1− e2

8π2

1
ε

Scalar electrodynamics, Z1 = 1+
3e2

8π2

1
ε

Spinor gauge theory, Z1 = 1− (C (R)+T (A))
g 2

8π2

1
ε

Scalar gauge theory, Z1 = 1+
�

C (R)− 1
4

T (A)
�3g 2

8π2

1
ε

Beta functions

φ3 theory in d = 6, βκ(κ) =−
3κ3

256π3

φ4 theory in d = 4, βλ(λ) =
3λ2

16π2

Yukawa interaction, βg (g ,κ,λ) =
5g 3

16π2

φ3 coupling in Yukawa theory, βκ(g ,κ,λ) =
3g 2κ

8π2
−

3m g 3

π2
+

3κλ
16π2

φ4 coupling in Yukawa theory, βλ(g ,κ,λ) =
3λ2

16π2
+

g 2λ

2π2
−

3g 4

π2

Spinor electrodynamics, β(e) =
e3

12π2

Scalar electrodynamics, β(e ,λ) =
e3

48π2

Spinor gauge theory, β(g ) =−
�

11
3

T (A)− 4
3

T (R)
� g 3

16π2

Scalar gauge theory, β(g ,λ) =−
�

19
3

T (A)− 1
3

T (R)
� g 3

16π2
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Chapter 6

Spinor Helicity Formalism

After introducing spinor helicity variables as linearly independent solu-
tions to the massless Dirac equation, we express things like momentum conservation,
Fierz and Schouten identities, and polarization vectors in this new language. To
demonstrate the power of this new formalism, Feynman rules for QED are written
in terms of twistor variables and scattering amplitude for Compton scattering is
computed using these new tools.

The free Dirac equation,
(−i 6∂ +m)ψ= 0, (6.1)

has plane wave solutions of the form

ψ(x) =
∑

s=±

∫

Ýd p
�

bs (p)us (p)e
i p x + d †

s (p)vs (p)e
−i p x
�

, (6.2)

whereÝd p = d 3 p/(2π)32Ep is the Lorentz invariant momentummeasure and b †
±(p),

d †
±(p) and b±(p), d±(p) are fermionic creation and annihilation operators respectively
that take care of the Grassmann nature of ψ(x). The four component spinors u±(p)
and v±(p) are commuting and solve

(6 p +m)us (p) = 0 and (−6 p +m)vs (p) = 0. (6.3)

Due to the group theory relation

(2,1)⊗ (1,2)⊗ (2,2) = (1,1)⊕ (3,1)⊕ (1,3)⊕ (3,3), (6.4)

for representations of the Lorentz group, there is an invariant symbol σµaȧ which
provides a dictionary between vector fields Aµ(x) and fields carrying one undotted
and one dotted index Aaȧ(x),

Aaȧ(x) = σ
µ
aȧAµ(x). (6.5)

A consistent choice for the invariant symbols is σµ = (I ,σ i ) and σ̄µ = (I ,−σ i ), where
σ i for i = 1,2,3 are Pauli matrices.

For a given four-momentum pµ = (E , p i )with p2 =−m2, we can definemomentum
bispinors

paȧ = σ
µ
aȧ pµ and p ȧa = σ̄µȧa pµ, (6.6)
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which can be thought of 2× 2 matrices

paȧ =








−p0+ p3 p1− i p2

p1+ i p2 −p0− p3








and p ȧa =








−p0− p3 −p1+ i p2

−p1− i p2 −p0+ p3








. (6.7)

The determinant is
det p =−pµ pµ = m2. (6.8)

Moreover, with the convention for gamma-matrices, we have

6 p =








0 paȧ
p ȧa 0








. (6.9)

6.1 Spinor helicity variables

In the extreme relativistic limit, when Mandelstam variables are much larger than
fermion mass, we take m→ 0. For massless fermions, the four-component spinors
satisfy

6 pvs (p) = 0 and ūs (p)6 p = 0, (6.10)

and the index s =± indicates the helicity h = s/2. Let

v+(p) =








|p]a
0








, v−(p) =








0
|p〉ȧ







(6.11)

and
ū+(p) =


[p|a 0


 , ū−(p) =


0 〈p|ȧ


 (6.12)

solve the massless Dirac equation. The angle and square spinors are two-component
commuting spinors that satisfy the massless Weyl equation,

p ȧa |p]a = 0, paȧ |p〉
ȧ = 0, [p|a paȧ = 0, 〈p|ȧ p ȧa = 0. (6.13)

These two-component commuting spinors are also sometimes called twistors. For real
valued momenta, the Dirac equation has only two independent solutions and the
angle and square spinors are related by

([p|a)∗ = |p〉ȧ and (〈p|ȧ)
∗ = |p]a , (6.14)

so that we have vs (p) = u−s (p).

Using the spin-sum completeness relation for massless spinors, we have

−6 p =
∑

s=±
us (p)ūs (p) = |p〉 [p|+ |p] 〈p| . (6.15)

On matching undotted and dotted indices with the matrix form of 6 p above,

paȧ =−|p]a 〈p|ȧ , p ȧa =−|p〉ȧ [p|a . (6.16)
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In explicit terms, for a (lightlike) momentum of the form

pµ =


E E sinθ cosφ E sinθ sinφ E cosθ


 , (6.17)

we have

paȧ =








−p0+ p3 p1− i p2

p1+ i p2 −p0− p3








= E








−1+ cosθ e−iφ sinθ
e iφ sinθ −1− cosθ









= 2E











− sin2 θ
2 e−iφ sin θ

2 cos θ2
e iφ sin θ

2 cos θ2 −cos2 θ
2











. (6.18)

Similarly,

p ȧa =−2E











cos2 θ
2 e−iφ sin θ

2 cos θ2
e iφ sin θ

2 cos θ2 sin2 θ
2











. (6.19)

Both paȧ and p ȧa arematrices of rank 1 and as solutions of themasslessWeyl equations,
we have

|p] =
p

2E











sin θ
2

−e iφ cos θ2











, |p〉=
p

2E











cos θ2
e iφ sin θ

2











(6.20)

and

〈p|=
p

2E


sin θ
2 −e−iφ cos θ2



 , [p|=
p

2E


cos θ2 e−iφ sin θ
2



 . (6.21)

The factor of
p

2E is arbitrary, but has been chosen so that the relations paȧ = |p] 〈p|
and p ȧa = |p〉 [p| hold.

We can define spinor brackets by contracting indices appropriately,

〈p q〉= 〈p|ȧ |q〉
ȧ , [p q] = [p|a |q]a . (6.22)

There are no mixed brackets becaues spinor indices cannot be contracted to give a
Lorentz scalar. Due to spinor indices, these brackets are antisymmetric

〈p q〉=−〈q p〉, [p q] =−[q p]. (6.23)

For real valued momenta we also have [p q]∗ = 〈q p〉.

We also have the following relation

〈p q〉[p q] =−〈p q〉[q p]

= 〈p|ȧ q ȧb |p]b
=−pb ȧ q ȧb

=−pµqν (σ
µ
b ȧ
σ ν ȧb )

=−pµqν (−2gµν )

= 2 p · q (6.24)
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In terms of these new spinor helicity variables,momentumconservation canbewritten
by noting (for a process with n external particles),

∑

i

6 p i =−
∑

i

(|i] 〈i |+ |i〉 [i |) = 0. (6.25)

On matching spinor indices, we have
∑

i

|i] 〈i |= 0 and
∑

i

|i〉 [i |= 0. (6.26)

Dotting with some spinors, we also have
∑

i

[k i]〈i l 〉= 0 and
∑

i

〈k i〉[i l ] = 0. (6.27)

In particular, for a four particle process, we have

|1] 〈1|+ |2] 〈2|+ |3] 〈3|+ |4] 〈4|= 0. (6.28)

Dotting with [1| and |2〉, we get

[13]〈32〉+[14]〈42〉= 0, (6.29)

and other similar identities. Using (p + q)2 = 〈p q〉[p q], we also have identities
like,

〈12〉[12] = (p1+ p2)
2 = (p3+ p4)

2 = 〈34〉[34]. (6.30)

These identities will be used extensively to simplify expressions for amplitudes in terms
of twistor brackets later.

6.1.1 Fierz and Schouten identities

We also have the Fierz identities, which are usually written in terms of four component
spinors us (p) and vs (p), in terms of twistor variables

〈p|γµ|q]γµ = 〈p|ȧ σ̄
µȧb |q]b (σµc ḋ + σ̄

ċ d
µ )

= 〈p|ȧ σ̄
µȧbσµc ḋ |q]b + 〈p|ȧ σ̄

µȧbσ ċ d
µ |q]b

=−2 〈p|ȧ δ
ȧ
ḋ
δ b

c |q]b − 2 〈p|ȧ ε
ȧ ċεb d |q]b

=−2|q]c 〈p|ḋ − 2 |p〉ċ [q |d , (6.31)

and therefore,
−1

2
〈p|γµ|q]γµ = |q] 〈p|+ |p〉 [q |. (6.32)

Similarly,
−1

2
[p|γµ |q〉γµ = |q〉 [p|+ |p] 〈q | (6.33)
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In an alternate form,

〈p|γµ|q] 〈r |γµ|s] = 2〈p r 〉[q s], (6.34)

[p|γµ |q〉 〈r |γµ|s] = 2[p s]〈q r 〉, (6.35)

[p|γµ |q〉 [r |γµ |s〉= 2[p r ]〈q s〉. (6.36)

If we note that the twistors are elements of a complex two dimensional vector space,
any three twistors |i〉 , | j 〉 , |k〉 are going to be linarly dependent,

|k〉= a |i〉+ b | j 〉 . (6.37)

Dotting once by 〈i | and once by 〈 j |, we can solve for a = 〈 j k〉/〈 j i〉 and b = 〈i k〉/〈i j 〉
so that

|i〉 〈 j k〉+ | j 〉 〈k i〉+ |k〉 〈i j 〉= 0. (6.38)

Dotting by an angle twistor 〈l |, we get the Schouten identity,

〈l i〉〈 j k〉+ 〈l j 〉〈k i〉+ 〈l k〉〈i j 〉= 0. (6.39)

Similarly for square twistors,

[l i][ j k]+ [l j ][k i]+ [l k][i j ] = 0. (6.40)

6.1.2 Polarization vectors

Finally, we have the polarization vectors,

εµ−(p; q) =−
〈p|γµ|q]
p

2[q p]
, εµ+(p; q) =−

〈q |γµ|p]
p

2〈q p〉
, (6.41)

where q is a lightlike referencemomentum. We can verify these expressions for a specific
value of p, and then say that the general case follows due to Lorentz transformation
properties of twistors and polarization vectors.

Choose a frame in which p = (E , 0, 0, E). The most general form of the polarization
vector for this momentum is

ε+(p) =
e iφ
p

2
(0,1,−i , 0)+C p, (6.42)

where e iφ is an arbitrary phase factor and C is a complex number. The freedom to
add a multiple of p comes due to the fact that p2 = 0. Using the explicit form of
twistors,

|p〉=
p

2E








1
0








, |p] =

p
2E








0
1








, and |q〉=









α
β








, (6.43)
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where α,β are complex numbers. Proper contraction of spinor indices, 〈q |γµ|p] =
〈q |ȧ σ̄µȧa |p]a , gives

ε+(p) =−
〈q | σ̄ |p]
p

2〈q p〉
=
�

−α
p

2β

1
p

2

−i
p

2

−α
p

2β

�

, (6.44)

so that the relation holds with e iφ = 1 and C = −β/
p

2αE . This identity can be
verified for the negative helicity polarization vector by using εµ∗+ = ε

µ
− and taking a

complex conjugate.

6.2 Compton scattering with twistor variables
With these tools we are ready to compute some scattering amplitudes. Consider
(massless) spinor electrodynamics,

L= iψ̄6∂ ψ− 1
4

F µνFµν + eψ̄6Aψ. (6.45)

In terms of twistors, we have the following Feynman rules.

– Outgoing fermion with h =+1/2: [p|
– Outgoing fermion with h =−1/2: 〈p|
– Outgoing antifermion with h =+1/2: |p]
– Outgoing antifermion with h =−1/2: |p〉
– Outgoing photon with h =±: εµ±(p)

Due to crossing symmetry, we can treat an incoming fermion (antifermion) with he-
licity h as an outgoing antifermion (fermion) with helicity−h . Similarly, an incoming
photon with helicity h can be treated as an outgoing photon with helicity−h.

In spinor electrodynamics, the polarization vector is always contractedwith γ -matrices.
We have the following useful forms,

6 ε−(p; q) =
p

2
[q p]

(|p〉 [q |+ |q] 〈p|), 6 ε+(p; q) =
p

2
〈q p〉

(|p] 〈q |+ |q〉 [p|), (6.46)

which are obtained by an application of the Fierz identities.

In eγ → eγ scattering, the following diagrams contribute

A(eγ → eγ ) =

1

4

2

3
+

12

43
(6.47)

We will compute the above process for specific helicity assignments. There are a total
of 16 different helicity assignments, but only 8 of these are independent; the other 8
are obtained by flipping all helicities.
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Consider a process in which electrons have the opposite helicity. For example,

A(e−γ → e+γ ) = i e2 [3|6 ε2(−6 p1+ 6 p4)6 ε4|1]
(p1− p4)2

+ i e2 [3|6 ε4(−6 p1−6 p2)6 ε2|1]
(p1+ p2)2

. (6.48)

But note that an odd number of gamma-matrices are sandwiched between spinors of
the same type. Such spinor products vanish (because indices cannot be contracted
to form a Lorentz scalar). Hence, processes with different initial and final electron
helicities are forbidden.

Consider a process in which photons have the opposite helicity,

A(e−γ−→ e−γ+) = i e2 〈3|6 ε2+(−6 p1+ 6 p4)6 ε4+|1]
(p1− p4)2

+ i e2 〈3|6 ε4+(−6 p1−6 p2)6 ε2+|1]
(p1+ p2)2

(6.49)

Numerator of the first term is proportional to 〈3 q2〉which can be made to vanish by
choosing q2 = p3. Likewise, numerator of the second term is proportional to 〈3 q4〉,
and can bemade to vanish by choosing q4 = p3. Hence, processes with different initial
and final photon helicities are also forbidden.

The only remaining amplitudes are A(e−γ− → e−γ−), A(e−γ+ → e−γ+) and their
crossing related cousins A(e+γ+→ e+γ+) and A(e+γ−→ e+γ−).

We start with

A(e−γ−→ e−γ−)

= i(
p

2e)2
�

〈3 q2〉[21]〈14〉[41]
〈q2 2〉〈14〉[41][q4 4]

+
〈34〉[q4|(|1] 〈1|+ |2] 〈2|) |q2〉 [21]

[q4 4]〈12〉[12]〈q2 2〉

�

(6.50)

Choosing q2 = p3 and q4 = p1, the first term vanishes and we have,

A(e−γ−→ e−γ−) = i(
p

2e)2
〈34〉[21]
[14]〈12〉

= i(
p

2e)2
[12]2

[14][43]
. (6.51)

And its crossing related cousin,

A(e+γ+→ e+γ+) = i(
p

2e)2
〈12〉2

〈14〉〈43〉
. (6.52)

Proceeding similarly,

A(e−γ+→ e−γ+)

= i(
p

2e)2
�

〈32〉[q2|(|1] 〈1|+ |4] 〈4|) |q4〉 [41]
[q2 2]〈14〉[41]〈q4 4〉

+
〈3 q4〉[41]〈12〉[q2 1]
〈q4 4〉[12]〈12〉[q2 2]

�

(6.53)

Choosing q2 = p1 and q4 = p3, the second term vanishes and we have,

A(e−γ+→ e−γ+) = i(
p

2e)2
〈23〉[14]
[12]〈14〉

= i(
p

2e)2
[14]2

[12][23]
. (6.54)
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And its crossing related cousin,

A(e+γ−→ e+γ−) = i(
p

2e)2
〈14〉2

〈12〉〈23〉
. (6.55)

For the unpolarized cross section of this process, we average over initial helicities and
sum over final helicities,




|A(eγ → eγ )|2
�

=
8e4

4

�

s2
12

s14 s34
+

s2
14

s12 s23

�

= 2e4
�

s12

s14
+

s14

s12

�

(6.56)

where si j =−(pi + p j )
2 =−2 pi · p j (for lightlike momenta). For diagrams as drawn

above, the Mandelstam variables are s12 = s , and s14 = u. For comparision, the
spin-averaged amplitude squared for Compton scattering obtained from traditional
methods is




|A(eγ → eγ )|2
�

= 2e4

�

m4+m2(3s + u)− s u
(m2− s)2

+
m4+m2(3u + s)− s u

(m2− u)2

+
2m2(s + u + 2m2)
(m2− s)(m2− u)

�

, (6.57)

which in the limit m2/s , m2/u� 1,




|A(eγ → eγ )|2
�

= 2e4
� s

u
+

u
s

�

, (6.58)

is identical to the spinor helicity result but computed with much greater effort.

It is remarkable that each amplitude is given only as a product of twistor brackets and
nothing else. In a sense, twistor variables give a unified representation of different
massless particles; instead of dealing with gammamatrices, Dirac spinors and polariza-
tion vectors separately, to compute amplitudes in spinor helicity formalism one only
needs to deal with twistor variables.



Chapter 7

Amplitudes in Nonabelian Gauge Theory

Unlike electrodynamics, in nonabelian gauge theory vertex factors like,

iVab c
µνρ(k1, k2, k3) = g f ab c[(k1− k2)ρ gµν +(k2− k3)µ gνρ+(k3− k1)ν gρµ], (7.1)

make calculation of even tree level processes extremely complicated. The reason for
this increased complexity is twofold: (1) colour factors (2) products of gammamatrices,
Dirac spinors, and polarization vectors. As seen with electrodynamics one can use
twistor variables to reduce complexity that stems from (2). For dealing with colour
factors, we introduce the Gervais–Neveu gauge and colour ordering.

Consider an SU(N ) gauge theory described by the Yang–Mills lagrangian,

LYM =−
1
4

Tr F µνFµν . (7.2)

For computing amplitudes, it is convenient to work in the Gervais–Neveu gauge,
which has the gauge fixing term

Lgf =−
1
2

Tr
�

Hµ
µ
�2, (7.3)

where Hµν = ∂µAν −
i gp

2
AµAν . After gauge fixing, the lagrangian takes the following

form,
L=Tr
�

−1
2
∂ µAν∂µAν − i

p
2g∂ µAνAνAµ+

1
4

g 2AµAνAµAν

�

. (7.4)

Let A(1, . . . , n) denote the scattering amplitude with n external gluons, all gluons
considered outgoing. Then the tree level amplitudes have the following color struc-
ture,

A(1, . . . , n) = g n−2
∑

noncyclic perms
Tr(T a1 · · ·T an )A[1, . . . , n], (7.5)

whereA[1, . . . , n] is a color-ordered partial amplitude. We can read off the color ordered
Feynman rules for vertices from Gervais–Neveu gauge fixed lagrangian,

– 3-gluon vertex Vµνρ(p, q , r ) =−
p

2(gµν pρ+ gνρqµ+ gρµ rν ),
– 4-gluon vertex Vµνρσ = gµρ gνσ .

These color ordered amplitudes have the following useful relations among them-
selves

≈ 32e
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1. Cyclicity: A[1,2, . . . , n] =A[2, . . . , n, 1], etc.
2. Reflection: A[n, . . . , 2, 1] = (−1)nA[1,2, . . . , n].
3. Decoupling of the fictitious photon:

A[1,2,3, . . . , n]+A[2,1,3, . . . , n]+A[2,3,1, . . . , n]+ · · ·+A[2,3, . . . , 1, n] = 0.
(7.6)

In the following, we adopt a convention in which all particles are considered outgoing.
In this convention, an incoming particle with helicity h, will become an outgoing
antiparticle with helicity−h.

If we also include a family of quarks in the fundamental representation of the gauge
group SU(N ), the interaction Lagrangian is L1 = (i g/

p
2)ψ̄6Aψ, and the color ordered

vertex rule is,

– Quark-gluon interaction vertex = Vµ = i gp
2
γµ.

In general, colour factors for a process can be obtained by drawing double line versions
of Feynman diagrams and contracting indices properly (cf. Appendix B).

7.1 qq→ qq

Let us start by computing an amplitude for qq→ qq scattering (and its crossing
related cousins). For the colour ordered amplitude, we have the following contributing
diagram,

iA[1q , 2q̄ , 3q , 4q̄] =

2

1

3

4

+

1 4

2 3

(7.7)

As with Compton scattering, we are going to compute this process for specific helicity
assignments. In our experience with QED, the only nonvanishing diagrams are those
in which helicities are “conserved”, therefore the only nonvanishing amplitudes are
A[1−q , 2+q̄ , 3−q , 4+q̄ ], A[1−q , 2+q̄ , 3+q , 4−q̄ ], A[1−q , 2−q̄ , 3+q , 4+q̄ ] and the other three amplitudes
obtained by flipping all helicities.

We have,

A[1−q , 2+q̄ , 3−q , 4+q̄ ] =
g 2

2

�〈1|γµ|2] 〈3|γµ|4]
−s12

+
〈1|γµ|3] 〈2|γµ|4]

−s13

�

= g 2
�

〈13〉2

〈12〉〈43〉
+
〈12〉2

〈13〉〈42〉

�

(7.8)
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using Fierz identity. Similarly,

A[1−q , 2+q̄ , 3+q , 4−q̄ ] =
g 2

2

〈1|γµ|2][3|γµ |4〉
−s12

= g 2 〈14〉2

〈12〉〈34〉
, (7.9)

and

A[1−q , 2−q̄ , 3+q , 4+q̄ ] =
g 2

2

〈1|γµ|4][3|γµ |2〉
−s14

= g 2 〈12〉2

〈23〉〈41〉
. (7.10)

As with QED the other two amplitudes are related by complex conjugation.

7.2 qq̄→ g g

Before computing this amplitude with external gluons, note the following

ε+(p; q) · ε+(p
′; q ′) =

〈q q ′〉[p p ′]
〈q p〉〈q ′ p ′〉

, (7.11)

ε−(p; q) · ε−(p
′; q ′) =

[q q ′]〈p p ′〉
[q p][q ′ p ′]

, (7.12)

ε+(p; q) · ε−(p
′; q ′) =

〈q p ′〉[p q ′]
〈q p〉[q ′ p ′]

, (7.13)

which are obtained using the form of polarization vectors given in the last chapter and
Fierz identities. Dotting with momenta, we also have

k · ε+(p; q) =
〈q k〉[k p]
p

2〈q p〉
, (7.14)

k · ε−(p; q) =
[q k]〈k p〉
p

2[q p]
. (7.15)

Note that p ·ε(p; q) = 0 and q ·ε(p; q) = 0, as expected for polarization vectors.

Next, let us consider an annihilationprocess qq̄→ g g (and its crossing related cousins).
We have the following diagrams for the colour ordered amplitude.

A[1q , 2q̄ , 3, 4] =

3

12

4

+

2 1

3 4

(7.16)

As before, we are going to compute the amplitude for specific helicity assignments.
Again, due to our experience with QEDwe expect the amplitude to vanish unless the
quarks have opposite helicity. It can also be shown with a clever choice of reference
vectors that the amplitude vanishes unless gluons have opposite helicity.

The only nonzero amplitudes are A[1−q , 2+q̄ , 3−, 4+], A[1−q , 2+q̄ , 3+, 4−] and two other
obtained by flipping all helicities.
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Consider,

A[1−q , 2+q̄ , 3−, 4+] =
g 2

2

〈1|6 ε4+(−6 p1−6 p4)6 ε3−|2]
−s14

− g 2
〈1|γσ |2]ε3µε4νV

µνσ
345

−s12
. (7.17)

Choosing q3 = p4 and q4 = p3, we have

ε3µε4νV
µνσ
345 = (ε3− · ε4+)p

σ
3 +(ε3− · p4)ε

σ
4++(ε4+ · (p3+ p4))ε

σ
3−. (7.18)

With above choices of reference momenta, ε3(p3; p4) · p4 = 0, and ε4(p4; p3) · (p3 +
p4) = 0. Using the polarization product identities, the first term is proportional to
〈33〉[44] = 0. Therefore, the second diagram does not contribute.

From the first diagram, we have

A[1−q , 2+q̄ , 3−, 4+] = g 2 〈13〉[41]〈13〉[42]
〈34〉[43]〈41〉[41]

= g 2 〈13〉3

〈12〉〈34〉〈41〉
. (7.19)

Similarly, only the first diagram contributes to the amplitude A[1−q , 2+q̄ , 3+, 4−]. We
have

A[1−q , 2+q̄ , 3+, 4−] = g 2 [23]〈41〉[13]〈41〉
〈43〉[34]〈14〉[14]

=
〈14〉3〈24〉

〈12〉〈23〉〈34〉〈41〉
. (7.20)

The remaining nonvanishing amplitudes are related by complex conjugation.

7.3 g g → g g

Before computing this amplitude note the following: If all of gluon helicities are the
same or all but one of the helicities are the same then the corresponding amplitude
vanishes at tree level.

We can go about proving the above claim as follows.

Consider A[1±, 2+, 3+, . . . , n+]. In a tree diagram with n external gluons, there are
going to be n polarization vectors, one from each external gluon. Moreover at tree
level there are no more than n − 2 three point gluon vertices. In each term of the
partial amplitude, the polarization vector should either be contracted with a momen-
tum factor from a 3-gluon vertex or another polarization vector. As the number of
polarization vectors is n, while the number of 3-gluon vertices is n− 2, there must be
at least one product of polarization vectors in each term of the amplitude.

If we make a clever choice of reference momenta, q1 = q2 = · · ·= qn = p1, all of the
polarization products vanish, and therefore the amplitude is zero.

Now, back to g g → g g scattering. Due to the above argument, the only nonvanish-
ing four gluon amplitudes are those in which two gluons have positive helicity and
two have negative helicity. Starting with A[1−, 2−, 3+, 4+], we have the diagrams in
Fig. 7.1.
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Figure 7.1: Contributing tree level diagrams for g g → g g process.

We choose the reference momenta to make most of the polarization products vanish.
Choosing q1 = q2 = p4, we have

ε1− · ε2− = 0, ε1− · ε4+ = 0, ε2− · ε4+ = 0,

and choosing q3 = q4 = p1, we have

ε1− · ε3+ = 0, ε3+ · ε4+ = 0. (7.21)

The only nonvanishing polarization product is

ε2− · ε3+ =
〈q3 2〉[3 q2]
〈q3 3〉[q2 2]

=
〈12〉[34]
〈13〉[42]

. (7.22)

We calculate vertex factors for the first diagram. With p5 =−p1− p2, the 125 vertex
is

Vµ
125 =−

p
2
�

(ε1 · ε2)p
µ
1 +(p2 · ε1)ε

µ
2 +(p5 · ε2)ε

µ
1

�

=−
p

2
�

(p2 · ε1)ε
µ
2 +(p5 · ε2)ε

µ
1

�

=−
p

2
�

(p2 · ε1)ε
µ
2 − (p1 · ε2)ε

µ
1

�

, (7.23)

where first term vanishes because ε1 · ε2 = 0. Similarly, the 345 vertex is

Vν
345 =−

p
2[(ε3 · ε4)p

ν
3 +(p4 · ε3)ε

ν
4+(−p5 · ε4)ε

ν
3]

=−
p

2[(p4 · ε3)ε
ν
4− (p3 · ε4)ε

ν
3]. (7.24)

Putting both of these pieces together, we have

i
Vµ

125 gµνV
ν
345

−s12
= 2i

(p2 · ε1)(p3 · ε4)(ε2 · ε3)
s12

, (7.25)

because all other polarization products vanish.

In the second diagram consider the 145 vertex; it is proportional to

(ε1 · ε4)p1+(ε1 · p4)ε4+(ε4 · p5)ε1. (7.26)
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The first term vanishes because ε1 · ε4 = 0, the second term vanishes because ε1 · p4 =
ε1 · q1 = 0, the third term vanishes because

ε4 · p5 = ε4 · (−p1− p4)

= ε4 · (−q4− p4) = 0. (7.27)

Therefore the second diagram does not contribute.

Finally, the third diagram, with the four point contact vertex, contains the terms ε1 ·ε3
and ε2 · ε4, which are both zero. Hence, it doesn’t contribute either.

The only contribution to this process comes from the first diagram,

A[1−, 2−, 3+, 4+] = 2
(p2 · ε1)(p3 · ε4)(ε2 · ε3)

−s12

=
[42]〈21〉〈13〉[34]〈12〉[34]
〈12〉[21][41]〈14〉〈13〉[42]

=
〈21〉[34]2

[21][41]〈14〉
(7.28)

Multiplying the above expression by 〈21〉/〈21〉, using 〈21〉[21] = 〈34〉[34], then
multiplying by 〈41〉/〈41〉 and using [34]〈41〉=−[32]〈21〉, we have

A[1−, 2−, 3+, 4+] =
〈12〉4

〈12〉〈23〉〈34〉〈41〉
. (7.29)

Using cyclic property of color-ordered amplitudes, we can obtain all other amplitudes
in which the negative helicity gluons are adjacent from the above amplitude. For
example

A[1+, 2−, 3−, 4+] =
〈23〉4

〈12〉〈23〉〈34〉〈41〉
, A[1−, 2+, 3+, 4−] =

〈14〉4

〈12〉〈23〉〈34〉〈41〉
.

(7.30)

Using U(1) decoupling A[1,2,3,4]+A[2,1,3,4]+A[2,3,1,4] = 0,

A[1−, 2+, 3−, 4+] =−A[2+, 1−, 3−, 4+]−A[2+, 3−, 1−, 4+], (7.31)

and simplifying using the Schouten identity, we can get amplitudes in which negative
helicity gluons are not adjacent,

A[1−, 2+, 3−, 4+] =
〈13〉4

〈12〉〈23〉〈34〉〈41〉
. (7.32)

These are examples of the famous Parke–Taylor amplitudes for n = 4. An induc-
tive proof of the general Parke–Taylor formula for any n will be given in the next
chapter.
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7.4 Three particle special kinematics

Despite appearing simpler than the four point amplitude, there are some kinematic
considerations for three point gluon amplitudes due to which we have to be careful
when choosing referencemomenta in polarization vectors. As a result we cannotmake
“clever choices” as we have been doing till now to simplify amplitudes.

The first thing to note is that, for real valued momenta the all three point gluon
amplitudes vanish due to arguments at the beginning of the last section. However, in
the next chapter we are going to introduce complex shifts of momentum, so a shifted
3-point amplitude would not in general be zero.

Consider a scattering process of three massless particles with all particles outgoing,
having momenta p, q and r . Momentum vectors are lightlike, i.e., p2 = q2 = r 2 = 0,
and satisfy momentum conservation p + q + r = 0. We have

〈p q〉[p q] = 2 p · q = (p + q)2 = r 2 = 0, (7.33)

which means either 〈p q〉 = 0 or [p q] = 01. Let 〈p q〉 = 0 and [p q] 6= 0; then we
have

[p q]〈q r 〉=−[p|6q |r 〉=−[p|(6 p + 6 r ) |r 〉= 0, (7.34)

therefore 〈q r 〉 = 0. Similarly, one can also show 〈p r 〉 = 0. Hence we have 〈p q〉 =
〈q r 〉= 〈r p〉= 0, or alternatively

|p〉∝ |q〉∝ |r 〉 . (7.35)

Had we taken [p q] = 0 and 〈p q〉 6= 0, we would have concluded [p q] = [q r ] =
[r p] = 0 and

|p]∝ |q]∝ |r ]. (7.36)

For three point amplitudes with external gauge bosons, one must take care when
choosing reference momenta for polarization vectors and make sure that the choice
does not lead to a spinor bracket vanishing in the denominator.

Let us now consider the color-ordered three point gluon amplitude,

1

2

3

A[1−, 2−, 3+]

=−
[q1 q2]〈12〉〈q3 2〉[23]+ 〈q3 2〉[3 q2][q1 2]〈21〉+ 〈q3 1〉[3 q1][q2 3]〈32〉

[q1 1][q2 2]〈q3 3〉
. (7.37)

1If momenta were real valued we would have 〈p q〉∗ = [q p] and therefore 〈p q〉= 0 ⇐⇒ [p q] = 0.
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Due to three particle kinematics, we cannotmake a clever choice of referencemomenta
q j to simplify the amplitude without making the denominator zero. If we have |1〉∝
|2〉 ∝ |3〉, each term in the numerator vanishes and the amplitude becomes zero, so
we choose |1]∝ |2]∝ |3]. With this choice, the first term vanishes and,

A[1−, 2−, 3+] =−
〈q3 2〉[3 q2][q1 2]〈21〉+ 〈q3 1〉[3 q1][q2 3]〈32〉

[q1 1][q2 2]〈q3 3〉
.

Using momentum conservation relations and the Schouten identity, the amplitude
can be simplified to

A[1−, 2−, 3+] =
〈12〉3

〈23〉〈31〉
=

〈12〉4

〈12〉〈23〉〈34〉
. (7.38)

Similarly, we can also compute the amplitude in which two helicities are positive and
one is negative,

A[1+, 2+, 3−] =
[12]3

[23][31]
=

[12]4

[12][23][34]
. (7.39)

Remarkably, these amplitudes have a form very similar to what we obtained for four
point gluon amplitudes. As we shall see, this is not a coincidence: these are both
special cases of the general n-pointMHV amplitude.



Chapter 8

Complex Shifts, Recursion Relations, and the Parke–
Taylor Formula

In this chapter we are going to give an inductive proof of the Parke–Taylor formula
for n-gluon MHV amplitude. The base case for this induction proof is the three
point amplitude A[1,2,3], which we computed in the last section of the previous
chapter. In the next section we start with a general description of complex shifts and
on-shell recursion relations before specializing to the BCFW shift. Finally, we prove
the Parke–Taylor formula using BCFW recursion.

8.1 On-shell recursion relations

We are now going to set up the machinery of on-shell recursion relations for com-
puting tree level amplitudes. For an n-point on-shell amplitude, introduce n shift
vectors ri , which could, in general, be complex valued. We require ri to satisfy the
following

1. Momentum conservation:∑ni=1 ri = 0,
2. Orthogonality: ri · r j = 0, and in particular r 2

i = 0 for each i ,
3. pi · ri = 0 (no sum) for each i .

With these, we define shifted momenta

p̂i = pi + z ri , (8.1)

where z ∈C. By the requirements (1)–(3) on ri , the shifted momenta satisfy momen-
tum conservation∑ni=1 p̂i = 0, and the on shell condition p̂2

i = 0.

In general, an amplitude will have Feynman propagators for every internal line. An
internal line carrying momentum PI =

∑

i∈I pi—where I indexes a collection of
momenta—will bring a factor of 1/P 2

I due to the Feynman propagator. With shifted
momenta we define P̂I =

∑

i∈I p̂i , and we have

P̂ 2
I = (PI + zRI )

2 = P 2
I + 2zPI ·RI , (8.2)

95
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where RI =
∑

i∈I ri , and the z2 term vanishes due to property (2) of the shift vectors.
We can pull out various factors to write

P̂ 2
I =−

P 2
I

zI
(z − zI ) with zI =−

P 2
I

2PI ·RI
. (8.3)

As the shifted momenta satisfy momentum conservation and the on-shell condition,
we can define a shifted on-shell amplitude Ân(z)with pi → p̂i . Due to arguments of
the last paragraph, each Feynman propagator carryingmomentum PI → P̂I , will bring
a simple pole at z = zI into the shifted amplitude. If we are interested only in tree
level processes, the amplitude does not have any branch cuts or other singularities;
simple poles coming from Feynman propagators are the only singularities.

The shifted amplitude as defined above is a function of z in the complex plane. In fact,
for tree level amplitudes, Ân(z) is a rational function of z and is therefore holomorphic
everywhere except at its poles.

Consider the function Â(z)/z defined on the complex plane; it has a simple pole at
z = 0 with residue An = Ân(z = 0), the unshifted amplitude. If we draw a contour in
the complex plane containing all of its simple poles, including the one at the origin,
we can integrate over this contour and use the residue theorem to write

An +
∑

zI

Resz=zI

Ân(z)
z
= Bn , (8.4)

where the sum is over all poles, and Bn is the residue “at infinity”. When Bn = 0, the
recursion works and we have the n-point amplitude

An =−
∑

zI

Resz=zI

Ân(z)
z

, (8.5)

as a sum of residues.

As discussed above, for tree level processes, poles occur only when a shifted propagator
goes on-shell at zI , i.e., P̂ 2

I (z = zI ) = 0. When a propagator goes on-shell near zI , it
corresponds to the exchange of a real particle, and as a result the total amplitude can
be written as a product of two lower point on-shell subamplitudes,

Ân(z)
near zI∼ ÂL(zI )

1

P̂I

ÂR(zI ) =−
zI

z − zI
ÂL(zI )

1

P̂I

ÂR(zI ). (8.6)

With this it is easy to compute the residue of Ân(z)/z at zI . We have,

−Resz=zI

Ân(z)
z
= ÂL(zI )

1
P 2

I

ÂR(zI ). (8.7)
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Therefore the unshifted on-shell amplitude is given by

An =
∑

I
ÂL(zI )

1
P 2

I

ÂR(zI ) =
∑

I

PI (8.8)

where the sum is over all factorization channels I . Hence, an n-point on-shell ampli-
tude is given as a product of lower point on-shell amplitudes. This forms the basis of
the BCFW recursion relation that we will introduce in the next section.

8.2 Britto–Cachazo–Feng–Witten

In this section we are going to introduce a very special kind of shift called the BCFW
(Britto–Cachazo–Feng–Witten) shift to derive BCFW recursion relations and finally
prove the n-point Parke–Taylor amplitude formula.

Given an n-point amplitude with external (on-shell) momenta p1, . . . , pn , pick
out two of these momenta, say pi and p j (i < j ) and define shifts as follows,

|î] = |i]+ z | j ], |î〉= |i〉 , | ĵ ] = | j ], | ĵ 〉= | j 〉− z |i〉 . (8.9)

This is called an [i , j 〉 shift. Using−2 pµ = 〈p|γµ|p], we can write the shifts in terms
of momenta,

p̂µi = pµi −
z
2
〈i |γµ| j ] and p̂µj = pµj +

z
2
〈i |γµ| j ], (8.10)

so that the shift vectors are,

rµi =−
1
2
〈i |γµ| j ], rµj =+

1
2
〈i |γµ| j ], rµ

k
= 0 when k 6= i or j . (8.11)

An application of Fierz identities shows that these vectors satisfy the properties (1)–(3)
required of shift vectors.

For Yang–Mills theory, in particular, the BCFW shift satisfies limz→∞ Ân(z) = 0, when,
in terms of helicities, the [i , j 〉 shift looks like one of [−,−〉, [−,+〉 or [+,+〉. If the
above holds, Bn = 0, and the recursion going to work.

Before going on to prove the Parke–Taylor formula, let us compute the four point
gluon scattering amplitude A[1−, 2−, 3+, 4+] using a [1,2〉 shift.

The first thing to note is that each subamplitude has to have at least three external
points. Secondly, an internal propagator can go on shell only when 1 and 2 are in
different subamplitudes. For if 1 and 2 are in the same subamplitude (cf. Figure
below), the propagator carries momentum P12 → P̂12 = p̂1 + p̂2 = p1 + p2 = P12,
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which does not go on-shell for generic momenta.

P h
12

1

2 3

4

(8.12)

Finally, as we are calculating the color-ordered amplitude, we only draw diagrams in
which gluons are labelled cyclically. With all these things in mind, there is only one
factorization channel (two if we account for helicities) for the four point amplitude
with a [1,2〉 shift.

A[1−, 2−, 3+, 4+] =
∑

h=±

P h
23

2

3 4

1

(8.13)

Using the recursion formula,

A[1−, 2−, 3+, 4+] =
Â[1̂−, P̂−23, 4+] Â[2̂−, 3+,−P̂+23]

P 2
23

+
Â[1̂−, P̂+23, 4+] Â[2̂−, 3+,−P̂−23]

P 2
23

(8.14)

Consider the three point amplitude,

Â[1̂−, P̂+23, 4+] =
[P̂+23 4]3

[1̂ P̂23][4 1̂]
(8.15)

The shifted momentum is on-shell, i.e.,

P̂ 2
23 = ( p̂2+ p3)

2 = ( p̂1+ p4)
2 = [1̂ 4]〈1̂ 4〉= [1̂ 4]〈14〉= 0. (8.16)

For generic momenta this is only possible if [1̂ 4] = 0. In the numerator we have

|P̂23〉 [P̂23 4] =−P̂23|4] =−( p̂2+ p3)|4] = ( p̂1+ p4)|4] = p̂1|4] = |1̂〉 [1̂ 4] = 0, (8.17)

which, again, for generic momenta is only possible when [P̂23 4] = 0. Similarly, we
can also show [1̂ P̂23] = 0. As P̂23 goes on-shell, there are three powers of zero in the
numerator and only two in the denominator, therefore, this amplitude vanishes.
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Only the first term contributes to the four point amplitude. Using P 2
23 = 〈23〉[23]

and the form of three point amplitudes, we have

A[1−, 2−, 3+, 4+] =−
〈1̂ P̂23〉3[3 P̂23]

3

〈P̂23 4〉〈4 1̂〉〈23〉[23][2̂ 3][P̂23 2]

=
〈12〉3[23]3

〈41〉[23]〈23〉[23]〈34〉[23]

=
〈12〉4

〈12〉〈23〉〈34〉〈41〉
, (8.18)

where to simplify, weused 〈1̂ P̂23〉[P̂23 3] =−〈12〉[23] and 〈P̂23 4〉[P̂23 2̂] =−〈34〉[23].

For an amplitude inwhich thenegative helicity gluons arenot adjacent, likeA[1−, 2+, 3−, 4+],
the calculation is exactly the same, but instead of a [1,2〉 shift, one has to start with a
[1,3〉 shift.

Adapting the general recursion relation for a BCFW [i , j 〉 shift, we have the BCFW
recursion formula,

An =
∑

I
ÂL(zI )

1
P 2

I

ÂR(zI ) =
∑

I

PI
î

ĵ

(8.19)

where the sum is over all factorization channels such that pi and p j are on different
subamplitudes. For otherwise, as in the n = 4 case, the momentum P̂I does not go
on-shell.

8.3 Proof of the Parke–Taylor formula

Computing an n-point MHV amplitude for gluons proceeds very similarly to the
computation of the four point amplitude. For reference, the n-point Parke–Taylor
formula is

A[1−, 2−, 3+, . . . , n+] =
〈12〉4

〈12〉〈23〉〈34〉 · · · 〈n 1〉
. (8.20)

The proof will proceed by induction on the number of gluons n. We already have the
result for 3 point amplitudes, which is going to serve as the base case of induction. As
induction hypothesis assume that all lower point amplitudes are given by the Parke–
Taylor formula. To compute the n point amplitude A[1−, 2−, 3+ . . . , n+] recursively,
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we are going touse a [1,2〉 shift. According toBCFWrecursion, the amplitude is

A[1−, 2−, 3+, . . . , n+] =
n
∑

k=4

∑

h=±

P̂ h
I

1̂−

n+

k + 1+

k+ k − 1+

3+

2̂−

(8.21)

where the sum includes all factorization channels and there is also a sum over possible
helicities of the exchanged gluon. In terms of subamplitudes, we have

A[1−, 2−, 3+, . . . , n+]

=
n
∑

k=4

∑

h=±

�

ÂL[1̂
−, P̂ h

I , k+, . . . , n+]
1

P 2
I

ÂR[−P̂−h
I , 2̂−, 3+, . . . , (k − 1)+]

�

. (8.22)

Now, using the fact that all gluon tree amplitudes vanish, except n = 3, in which
one of the gluons has a helicity different from the rest vanishes, only two diagrams
survive

A[1−, 2−, 3+, . . . , n+] = ÂL[1̂
−,−P̂+1n , n+]

1
P 2

1n

ÂR[P̂
−
1n , 2̂−, 3+, . . . , (n− 1)+]

+ÂL[1̂
−, P̂−23, 4+, . . . , n+]

1
P 2

23

ÂR[−P̂+23, 2̂−, 3+] (8.23)

As in the case of the four point amplitude,

Â[1̂−,−P̂+1n , n̂] =
[P̂1n n]3

[n 1̂][1̂ P̂1n]
= 0, (8.24)

because
P̂ 2

1n = ( p̂1+ pn)
2 = [1̂ n]〈1̂ n〉= [1̂ n]〈1 n〉= 0, (8.25)

which can only occur for generic momenta if [1̂ n] = 0. In the numerator,

|P̂1n〉 [P̂1n n] =−P̂1n |n] =−( p̂1+ pn)|n] =− p̂1|n] = |1̂〉 [1̂ n] = 0, (8.26)

which can only occur for generic momenta if [P̂1n n] = 0. Similarly,

|P̂1n〉 [1̂ P̂1n] = |n〉 [1̂ n] = 0, (8.27)

and therefore [1̂ P̂1n] = 0. There are three powers of zero in the numerator and two
powers in the denominator, hence as P̂1n goes on-shell, this three point amplitude
vanishes.
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Now, we are only left with

A[1−, 2−, 3+, . . . , n+] = ÂL[1̂
−, P̂−23, 4+, . . . , n+]

1
P 2

23

ÂR[−P̂+23, 2̂−, 3+]. (8.28)

ÂL is a n−1 point amplitude and AR is a three point amplitude. By induction hypoth-
esis,

ÂL[1̂
−, P̂−23, 4+, . . . , n+] =

〈1̂ P̂23〉4

〈1̂ P̂23〉〈P̂23 4〉〈45〉 · · · 〈n 1〉
, (8.29)

and due to the induction base case,

AR[−P̂+23, 2̂−, 3+] =
[P̂23 3]3

[P̂23 2̂][2̂ 3]
. (8.30)

Using P 2
23 = 〈23〉[23], and the relationships 〈1̂ P̂23〉[P̂23 3] =−〈12〉[23] and 〈P̂23 4〉[P̂23 2̂] =

−〈34〉[23], we can simplify the n point amplitude to

A[1−, 2−, 3+, . . . , n+] =
〈12〉4

〈12〉〈23〉〈34〉 · · · 〈n 1〉
. (8.31)

This concludes the proof of Parke–Taylor formula.

For a version of the formula in which the negative helicity gluons are not adjacent,
i.e., an amplitude like A[1−, 2+, . . . , i−, . . . , n+], the proof proceeds exactly as above
but instead of a [1,2〉 shift, one has to start with a [1, i〉 shift to build appropriate
recursion relations.
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Appendix A

Reference Formulae

Some formulae that are used throughout the main text are collected here for quick
reference.

Minkowskimetric has themostly positive signature: gµν = diag(−,+,+,+). We define
two-dimensional generators of Lorentz group,

σµ
aḃ
= (1,σ), σ̄µȧb = (1,−σ), (A.1)

where σ are Pauli matrices. Two component spinor indices are raise and lowered
using

εab = εȧ ḃ =








0 1
−1 0








=−εab =−εȧ ḃ (A.2)

A.1 Integrals

Feynman’s trick to convert a reciprocal of products into an integral:

1
A1 . . .An

=
∫

d Fn(x1A1+ · · ·+ xnAn)
−n , (A.3)

where
∫

d Fn = (n− 1)!
∫ 1

0
d x1 . . . d xnδ(x1+ · · ·+ xn − 1). (A.4)

For just two factors it reduces to:

1
A1A2

=
∫ 1

0
d x

1
(xA+(1− x)B)2

(A.5)

Symmetric integration identity:
∫

d d k
(2π)d

kµkν f (k2) = d−1 gµν

∫

d d k
(2π)d

k2 f (k2). (A.6)
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For d -dimensional Euclidean space integrals:

∫

d d k̄
(2π)d

(k̄2)a

(k̄2+D)b
=
Γ (b − a− d

2 )Γ (a+
d
2 )

(4π)d/2Γ (b )Γ ( d
2 )

D−(b−a−d/2) (A.7)

Wick rotation to convert a Minkowski space integral to a Euclidean space integral:
k̄ j = k j for j = 1, . . . , d − 1, and k̄d = i k0, so that

k2 = k̄2 = k̄2
1 + · · ·+ k̄2

d and d d k = i d d k̄ (A.8)

A.2 Gamma function identities
Expansion near poles:

Γ (−n+ x) =
(−1)n

n!

�

1
x
− γ +

n
∑

k=1

k−1+O(x)
�

(A.9)

Derivative at positive integers:

Γ ′(m) = (m− 1)!
�

−γ +
m−1
∑

k=1

1
k

�

(A.10)

A.3 Gamma matrix identities
Gammamatrices satisfy the following Clifford algebra:

{γµ,γ ν}=−2gµν . (A.11)

Some properties of the γ5:

γ 2
5 = 1 (A.12)

{γµ,γ5}= 0. (A.13)

Trace identities:

Tr1= d (A.14)
Tr[odd no. of γµs] = 0 (A.15)

Trγ5 = 0 (A.16)
Tr[γ5(odd no. of γµs)] = 0 (A.17)

Tr[γµγ ν] =−4gµν (A.18)
Tr[6a6b ] =−4(ab ) (A.19)

Tr[γµγ νγργσ] = 4[gµν gρσ − gµρ g νσ + gµσ g νρ] (A.20)
Tr[6a6b6 c 6d ] = 4[(ab )(cd )− (ac)(b d )+ (ad )(b c)] (A.21)

(A.22)



107

Some contraction identities:

γµγµ =−d (A.23)

γµγ νγµ = (d − 2)γ ν (A.24)

γµ6aγµ = (d − 2)6a (A.25)

γµγ νγργµ = 4g νρ− (d − 4)γ νγρ (A.26)

γµ6a6bγµ = 4(ab )− (d − 4)6a6b (A.27)

A.4 Group representations
A representation R of a compact nonabelian group is specified by a set of D(R)×D(R)
matrices T a

R . These matrices satisfy the Lie algebra of the group:

[T a
R ,T b

R ] = i f ab c T c
R, (A.28)

where the structure coefficients f ab c are real and completely antisymmetric.

Adjoint representation of a compact nonabelian group is given by

(T a
A)

b c =−i f ab c . (A.29)

Indexof the representationT (R), and thequadraticCasimirC (R), are defined as,

TrT a
RT b

R = T (R)δab and T a
RT a

R =C (R), (A.30)

respectively. These quantities satisfy T (R)D(A) =C (R)D(R).

For fundamental representation N of special unitary groups SU(N ), we have

T (N ) =
1
2

and C (N ) =
N 2− 1

2N
, (A.31)

and for the adjoint representation T (A) =N .
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Appendix B

Feynman Rules

Feynman rules for quantum field theories used in the main text have been reproduced
here for reference.

B.1 For scalar field theories

Ignoring interactions for a moment, the free scalar propagator in momentum space is
given by

∆(k2) =
1

k2+M 2− iε
, (B.1)

and the free fermion propagator in momentum space is given by

S(6 p) =
−6 p +m

p2+m2− iε
. (B.2)

In each of the following theories, internal scalar lines carrying momentum k are
accompanied by a factor of−i∆(k2), and internal fermion lines carrying momentum
p are accompanied by a factor of−i S(6 p).

B.1.1 Scalar field theory with a cubic self-interaction

The renormalized Lagrangian that describes this theory is

L=−1
2

Zφ∂
µφ∂µφ−

1
2

ZM M 2φ2+
1
6

Zκκφ
3+Yφ. (B.3)

Due to the cubic self-interaction this theory has just one interaction vertex, at which
three scalar lines meet. The Feynman rules are as follows.

1. The expression corresponding to each diagram contains the following pieces:

– a factor of 1 for each external line,
– a free field propagator∆(k2)/i for each internal line with momentum k,
– and the following factors for the vertices
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= iZκκ,

k k =−i(Zφ− 1)k2− i(ZM − 1)M 2.

2. In a tree level calculation, the three point vertex factor should be taken to be iκ
and the counterterm vertices should be ignored, as Zi = 1+O(κ2).

3. A diagram with L closed loops will have L undetermined momenta. Each of the
undetermined momenta should be integrated over.

4. If there are exchanges of internal propagators and vertices that leave the diagram
unchanged, it represents that an overcounting has occurred, and the diagram is
said to carry a symmetry factor. The final expression should be divided by the
symmetry factor.

B.1.2 Scalar field theory with a quartic self-interaction

The renormalized Lagrangian for this theory is

L=−1
2

Zφ∂
µφ∂µφ−

1
2

ZM M 2φ2− 1
4!

Zλλφ
4. (B.4)

Due to the quartic self-interaction this theory has just one interaction vertex at which
four scalar lines meet. The Feynman rules are as follows

1. The expression corresponding to each diagram contains the following pieces:

– a factor of 1 for each external line,
– a free field propagator∆(k2)/i for each internal line with momentum k,
– and the following factors for the vertices

=−iZλλ,

k k =−i(Zφ− 1)k2− i(ZM − 1)M 2.

2. In a tree level calculation, the four point vertex factor should be taken to be−iλ
and the counterterm vertices should be ignored, as Zi = 1+O(λ).

3. A diagram with L closed loops will have L undetermined momenta. Each of the
undetermined momenta should be integrated over.

4. If there are exchanges of internal propagators and vertices that leave the diagram
unchanged, it represents that an overcounting has occurred, and the diagram is
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said to carry a symmetry factor. The final expression should be divided by the
symmetry factor.

B.1.3 Yukawa theory

The renormalized Lagrangian for Yukawa theory is

L= iZψψ̄6∂ ψ−Zm mψ̄ψ− 1
2

Zφ∂
µφ∂µφ−

1
2

ZM M 2φ2

+Zg gφψ̄ψ+
1
3!

Zκκφ
3− 1

4!
Zλλφ

4+Yφ. (B.5)

Apart from the Yukawa vertex, self interactions for the scalar field have to be added to
make sure that the theory is renormalizable. This leads to three interaction vertices in
this theory. The Feynman rules are as follows.

1. The expression corresponding to each diagram contains the following pieces:

– a factor of 1 for each external scalar,
– a free field propagator∆(k2)/i for each internal scalar with momentum k,
– a factor of us (p) for each incoming fermion,
– a factor of ūs ′(p

′) for each outgoing fermion,
– a factor of v̄s (p) for each incoming antifermion,
– a factor of vs ′(p

′) for each outgoing antifermion,
– a free field propagator S(6 p)/i for each internal fermion with momentum p,
– and the following factors for the vertices

= iZg g , = iZκκ, =−iZλλ,

p p
=−i(Zψ− 1)6 p − (Zm − 1)m,

k k =−i(Zφ− 1)k2− i(ZM − 1)M 2.

2. In a tree level calculation, the vertex factors should be taken to be i g , iκ and
−iλ respectively, and the counterterm vertices should be ignored, because Zi =
1+O(g 2,κ2,λ).

3. Overall sign of tree diagrams has to be determined by the relative direction of
arrows on two fermion lines joined by a scalar.

4. A diagram with L closed loops will have L undetermined momenta. Each of the
undetermined momenta should be integrated over.

5. Each closed fermion loop gives a factor of−1.
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6. If there are exchanges of internal propagators and vertices that leave the diagram
unchanged, it represents that an overcounting has occurred, and the diagram is
said to carry a symmetry factor. The final expression should be divided by the
symmetry factor.

B.2 For electrodynamics

Free photon propagator in Rξ gauge (in momentum space) is

∆µν (k) =
1

k2− iε

�

gµν − (1− ξ )
kµkν

k2

�

. (B.6)

Feynman gauge corresponds to the choice ξ = 1 and is convenient for evaluation of
loop diagrams in spinor electrodynamics, while the ξ = 0 corresponds to the Lorenz
gauge, which is convenient for evaluation of loop diagrams in scalar electrodynamics.
For completeness, propagators for scalar and spinor fields are given by

∆(k2) =
1

k2+M 2− iε
and S(6 p) =

−6 p +m
p2+m2− iε

, (B.7)

respectively.

B.2.1 Coupled to spinors

A theory of spinors coupled to the electromagnetic field is described by the following
renormalized Lagrangian

L=−1
4

Z3F µνFµν + iZ2ψ̄6∂ ψ−Zm mψ̄ψ+Z1eψ̄6Aψ. (B.8)

Apart from the countertermvertices, this theory has an interaction vertex that connects
a photon to a fermion-antifermion pair. The Feynman rules are as follows.

1. The expression corresponding to each diagram contains the following pieces:

– a factor of εµ∗
λ
(k) for each incoming photon,

– a factor of εµ
λ′
(k′) for each outgoing photon,

– a free field propagator∆µν (k)/i for each internal photon carrying momen-
tum k,

– a factor of us (p) for each incoming fermion,
– a factor of ūs ′(p

′) for each outgoing fermion,
– a factor of v̄s (p) for each incoming antifermion,
– a factor of vs ′(p

′) for each outgoing antifermion,
– a free field propagator S(6 p)/i for each internal fermion with momentum p,
– and the following factors for the vertices
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µ = iZ1eγµ

p p
=−i(Z2− 1)6 p − (Zm − 1)m,

k k
µ ν =−i(Z3− 1)(k2 gµν − kµkν ).

2. In a tree level calculation, the interaction vertex factor should be taken to be i eγµ

and the counterterms should be ignored, because Zi = 1+O(e2).
3. Overall sign of tree diagrams has to be determined by the relative direction of

arrows on two fermion lines joined by a photon.
4. A diagram with L closed loops will have L undetermined momenta. Each of the

undetermined momenta should be integrated over.
5. Each closed fermion loop gives a factor of−1.
6. If there are exchanges of internal propagators and vertices that leave the diagram

unchanged, it represents that an overcounting has occurred, and the diagram is
said to carry a symmetry factor. The final expression should be divided by the
symmetry factor.

B.2.2 Coupled to scalars

A theory of complex scalars coupled to the electromagnetic field is described by the
following renormalized Lagrangian

L= − 1
4

Z3F µνFµν −Z2∂
µφ†∂µφ−ZM M 2φ†φ

− 1
4

Zλλ(φ
†φ)2+ iZ1eAµ
�

φ†(∂µφ)− (∂µφ
†)φ
�

−Z4e2φ†φAµAµ. (B.9)

1. The expression corresponding to each diagram contains the following pieces:

– a factor of εµ∗
λ
(k) for each incoming photon,

– a factor of εµ
λ′
(k′) for each outgoing photon,

– a free field propagator∆µν (k)/i for each internal photon carrying momen-
tum k,

– a factor of 1 for each external scalar line
– a free field propagator∆(k2)/i for each internal fermion with momentum k ,
– and the following factors for the vertices
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k1

k2

µ = iZ1e(k1+ k2)µ,

µ

ν

=−2iZ4e2 gµν , =−iZλλ,

k k =−i(Z2− 1)k2− i(ZM − 1)M 2,

k k
µ ν =−i(Z3− 1)(k2 gµν − kµkν ).

2. In a tree level calculation, the interaction vertex factors should be taken to be
i e(k1+k2)µ,−2i2 gµν , and−iλ respectively, and counterterms should be ignored,
because Zi = 1+O(e2,λ).

3. A diagram with L closed loops will have L undetermined momenta. Each of the
undetermined momenta should be integrated over.

4. If there are exchanges of internal propagators and vertices that leave the diagram
unchanged, it represents that an overcounting has occurred, and the diagram is
said to carry a symmetry factor. The final expression should be divided by the
symmetry factor.

B.3 For nonabelian gauge theory

The Yang-Mills Lagrangian along with a gauge fixing term give

LYM+ Lgf =
1
2

Aeµ(gµν − ∂µ∂ν )A
eν +

1
2
ξ −1Aeµ∂µ∂νA

eν

− g f ab c AaµAb ν∂µAc
ν −

1
4

g 2 f ab e f cd e AaµAb νAc
µAd

ν . (B.10)

If we ignore gluon self-interactions for a moment, the first line gives the free gluon
propagator in the Rξ gauge,

∆ab
µν (k) =

δab

k2− iε

�

gµν − (1− ξ )
kµkν

k2

�

. (B.11)

Choice of ξ = 1 corresponds to the Feynman gauge and proves to be convenient for
loop calculations when the gauge field is coupled to spinors, and ξ = 0 corresponds
to the Lorenz gauge and proves to be convenient for loop calculations when the gauge
field is coupled to scalars.

Vertices for gluon self-interactions are the same, whether the theory is coupled to
spinors or scalars. Vertex factors are as follows.
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k1

k2

k3

a,µ

b , ν

c ,ρ

= iVab c
µνρ(k1, k2, k3)

= g f ab c[(k1− k2)ρ gµν +(k2− k3)µ gνρ+(k3− k1)ν gρµ],

a,µ

b , ν

d ,σ

c ,ρ

= iVab cd
µνρσ =−i g 2� f ab e f cd e (gµρ gνσ − gµσ gνρ)

+ f ace f d b e (gµσ gρν − gµν gρσ )

+ f ad e f b ce (gµν gσρ− gµρ gσν )
�

,

k k
a,µ b , ν =−i(Z3− 1)(k2 gµν − kµkν )δ

ab .

Gauge fixing also leads to the introduction of ghosts. The ghost Lagrangian is

Lgh =−∂
µ c̄ c∂µc c + g f ab c Aa

µ∂
µ c̄ b c c . (B.12)

The kinetic part of the Lagrangian gives the ghost propagator

∆ab (k2) =
δab

k2− iε
. (B.13)

Since ghosts are Grassmann fields, diagrams with a closed ghost loop will receive a fac-
tor of−1. Interaction of ghosts with gauge fields leads the the following vertex

k

l

c

b

a,µ = g f ab c lµ

B.3.1 Coupled to spinors

Spinors in representation R of the gauge group carry a colour index, and couple to
the gauge field via the following Lagrangian

Lfermion = iZ2ψ̄
i 6∂ ψi −Zm mψ̄iψi +Z1 gAaµψ̄iγµ(T a

R)
j

i ψ j , (B.14)

where T a
R are generators of the gauge group in representation R. Number of colours is

equal to the dimension of the representation. Due to colours, the fermion propagator
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carries additional indices,

S j
i (6 p) =

(−6 p +m)δ j
i

p2+m2− iε
, (B.15)

and so does the counterterm for fermion propagator,

p p
i j = (−i(Z2− 1)6 p − i(Zm − 1)m)δ j

i .

Rules for incoming and outgoing fermions is identical to electrodynamics. The
interaction vertex gives the following factor

a,µ

i

j

= i(Vaµ) j
i = iZ1 gγµ(T a

R)
j

i

B.3.2 Coupled to scalars

Complex scalars in representation R of the gauge group carry a colour index, and
couple to the gauge field via the following Lagrangian

Lscalar = −Z2∂
µφ†i∂µφi −ZM M 2φ†iφi

− 1
2

Zλλφ
†iφiφ

† jφ j + i gZ1Aa
µ

�

(∂ µφ†i )(T a
R)

j
i φ j −φ

†i (T a
R)

j
i (∂

µφ j )
�

−Z4 g 2AaµAb
µφ

†i (T a
RT b

R )
j

i φ j , (B.16)

where T a
R are generators of the gauge group in representation R. Number of colours

is equal to the dimension of the representation. Due to colours, the scalar propagator
carries additional indices,

∆ j
i (k

2) =
δ j

i

k2+M 2− iε
, (B.17)

and so does the counterterm for scalar propagator,

k k
i j = (−i(Z2− 1)k2− i(ZM − 1)M 2)δ j

i .
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Rules for incoming and outgoing scalars is identical to electrodynamics. Interactions
give the following vertex factors

k1

k2

a,µ

i

j

= iZ1 g (k1+ k2)µ(T
a
R)

j
i ,

a,µ

b , ν

i

j

=−iZ4 g 2(T a
RT a

R +T b
R T a

R)
j

i gµν ,

i

j

l

k

=− i
2

Zλλ (δi jδk l +δi kδ j l ).



118



Appendix C

Coloured Ordered Feynman Rules

The Yang–Mills Lagrangian in the Gervais–Neveu gauge is of the form,

L=Tr
�

−1
2
∂ µAν∂µAν − i

p
2g∂ µAνAνAµ+

1
4

g 2AµAνAµAν

�

. (C.1)

Treating Aµ as a matrix field, (Aµ) j
i =Aaµ(T a) j

i , the propagator for (A
µ) j

i is

(∆ab
µν )

k l
i j (k

2) = (T a) j
i (T

b ) l
k

δab gµν
k2− iε

. (C.2)

In the double line notation, the gluon propagator is,

i l

j k (C.3)

Arrows point from an up index to a down index. Having taken colour factors into
account already, the vertex rules become very simple

– 3-point vertex Vµνρ(p, q , r ) =−i
p

2g (gµν pρ+ gνρqµ+ gρµ rν ),
– 4-point vertex Vµνρσ = i g 2 gµρ gνσ .

Due to the way colour indices are contracted the vertices in double line notation look
like

(C.4)

Colour factors are assigned by starting at an external point and following arrows
backwards. For example, in the following diagram

1

2 3

4

(C.5)
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≈ 100ζ (3)

the colour factor isTrT a1T a2T a3T a4 . Similarly, in general for a diagramwith n external
gluons, the colour factor will be TrT a1T a2 · · ·T an .

As a final note, when there are massless quarks in the theory that couple to gauge fields
by an interaction term of the form L1 = i(g/

p
2)ψ̄6Aψ, the fermion propagator will

just be a single line, but will carry colour indices,

S j
i (6 p) =

−6 p
p2− iε

δ j
i . (C.6)

The vertex factor will be,

– Quark-gluon vertex, iVµ = i gp
2
γµ,

and finally in double line notation, the quark gluon vertex will look like

(C.7)

where the single lines are for quarks and arrows are drawn so that they are consistent
with arrows on fermion lines in traditional Feynman diagrams.
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