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Abstract

THIS REPORT GIVES AN OVERVIEW of my work in quantum field theory and gauge
theory over the last year. First part of this report summarizes the machinery of renor-
malized perturbation theory for quantum field theories. Calculations of renormalizing
Z-factors, beta functions, anomalous dimensions of the field, and anomalous dimen-
sion of mass are done for different quantum field theories — scalar field theories,
Yukawa theory, electrodynamics, and nonabelian gauge theory — to one loop order
in perturbation theory.

The second part of this report goes over modern techniques for computing tree level
scattering amplitudes in gauge theory. For computation of scattering amplitudes in
nonabelian gauge theory, in particular, spinor helicity formalism, twistor variables,
and colour ordering are introduced, and traditional Feynman rules are translated
into this new language. With these new Feynman rules, colour ordered amplitudes
are computed for QCD processes like g — gq, g4 — qg and most importantly,
g8 —> 88-

On-shell recursion relations for tree level processes are also introduced, which let us
completely bypass the business of drawing and computing Feynman diagrams, and
give us tools to completely determine higher point amplitudes in terms of lower point
amplitudes. Finally, to demonstrate the power of these methods an efficient proof of
the famous Parke—Taylor formula for maximally helicity violating (MHV) amplitudes
is constructed using BCFW recursion.
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CHAPTER I

Introduction

First part of this project was dedicated to learning the quantization and renormaliza-
tion of quantum field theories, and getting used to the kinds of calculations involved
in perturbative QFT. During this phase of the project I did calculations of beta func-
tions and anomalous dimensions for different quantum field theories to one loop
order.

In the second part, I learned the spinor helicity formalism and modern techniques
for computing scattering amplitudes in nonabelian gauge theory. In particular, I
learned how to compute colour ordered tree level amplitudes of certain perturbative
QCD processes, using both traditional Feynman rules translated to the spinor helicity
language and on-shell BCFW recursion relation. Finally, I have done a proof of the
famous Parke—Taylor formula using BCFW recursion.

Loops

AFTER A FIELD THEORY HAS BEEN QUANTIZED and Feynman rules been derived,
next to leading order terms in perturbation theory (the so called radzative corrections)
turn out to be ill-defined: they involve integration over an undetermined loop mo-
mentum, and this integral typically diverges in the ultraviolet limit. It is sometimes
possible to isolate and absorb these divergences by introducing an wltraviolet cutoff
and renormalizing fields and couplings so that observable quantities like scattering
amplitudes and cross sections remain finite despite the Lagrangian containing terms
that depend on the formally divergent UV cutoff. If it is possible to absorb divergences
to all orders in perturbation theory by renormalizing fields and parameters (or by
adding a finite number of new terms to the Lagrangian), the quantum field theory is
said to be renormalizable.

Renormalized fields and parameters in a renormalizable theory include a dependence
on a parameter called the renormalization scale, and requiring bare (unrenormalized)
fields and parameters to be independent of this scale gives important qualitative infor-
mation about the theory. For example, requiring the bare coupling to be independent
of the renormalization scale leads to an expression for the beta function which tells
us how the strength of interactions varies with the energy scale, or in the jargon of
quantum field theory, how the coupling runs.

In this report we start with some of the simplest quantum field theories— ¢ theory
in six spacetime dimensions and ng4 theory in four spacetime dimensions—to illustrate



how divergent integrals are dealt with using dimensional regularization and how fields
and parameters are renormalized, without additional complications that multiple
interactions, fermions or gauge fields involve.

Yukawa theory is the first theory we encounter in which additional interaction terms
have to be added to make the theory renormalizable by absorbing divergences from
certain vertex functions. Complications due to multiple different interactions in
calculation of beta functions and anomalous dimensions are dealt with in detail in
this section, and the results are carried over to gauge theories. Other than the multiple
couplings, and learning to handle Dirac spinors and gamma matrices, there are no
additional calculational difficulties.

After this, we apply the techniques learned in simpler theories to compute the famous
vacuum polarization, electron self-energy and vertex correction diagrams in quantum
electrodynamics. Using the divergent part of renormalizing factors, we calculate the
QED beta function, corrections to the scaling dimension of fermion and gauge fields,
and anomalous dimension of fermion mass. We also do these calculations in scalar
electrodynamics—a theory of complex scalars coupled to the electromagnetic field.
Apart from two more interaction vertices leading to a larger number of diagrams,
scalar electrodynamics poses no additional calculational difficulties.

Finally, we compute loop diagrams, beta functions and anomalous dimensions in
nonabelian gauge theory coupled to spinors and scalars. There are many technical
issues involving gauge fixing and quantisation of gauge fields, but we do not dwell
on these in this report, instead preferring to start from a gauge fixed Lagrangian
and coupling gauge fields to matter by the gauge principle. When the gauge group is
SU(3), results of this section reproduce the famous negative beta function of quantum
chromodynamics, which indicates that QCD is asymptotically free.

Amplitudes

With traditional Feynman rules for nonabelian gauge theory, vertex terms get extremely
complicated extremely quickly, to wit: even the tree level amplitude for gg — gg
process is very difficult to compute in perturbation theory.

For massless particles, the spinor belicity formalism and twistor variables help avoid
the labour involved in simplifying expressions for amplitudes, and in conjunction
with Gervais—Neveu gauge and colour ordering, they lead to simple and compact
final expressions. But computing amplitudes from Feynman rules written in the
language of twistor variables, despite being much simpler than traditional methods,
gets cumbersome for higher point amplitudes. For example, for s-, 6-, or 7-gluon
amplitudes, one has to compute 10, 38, and 154 Feynman diagrams respectively.

The approach of on-shell recursion relations uses the power of complex analysis to
factor higher-point on-shell amplitudes into a product of complex-shifted, lower-
point on-shell amplitudes. These methods avoid the whole process of drawing and
computing Feynman diagrams. BCFW (Britto, Cachazo, Feng, Witten) recursion
relations, in particular, provide a very eflicient inductive proof of the Parke—Taylor



formula, and also a way to construct more general higher point amplitudes using the
MHYV amplitude.

In Part 2, spinor helicity methods and twistor variables are introduced, and to demon-
strate these techniques tree level amplitude for Compton scattering is computed.
Next, we deal with various four point amplitudes in nonabelian gauge theory. Colour-
ordered amplitudes for QCD processes g — qq, 9q — gg and gg — gg (and their
crossing related cousins) are computed and expressed in terms of twistor variables.
BCFW recursion is introduced in Chapter 7 and is used to compute the four point
gluon amplitude using various three point amplitudes. Finally, the BCFW recursion is
used to prove the Parke—Taylor formula by mathematical induction over the number
of external gluons.

In appendices, we list important formulae used throughout this report, and compile
Feynman rules for all theories studied in the main text for reference.
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CHAPTER 2

Scalar Field Theories

WE START WITH TWO OF THE SIMPLEST quantum field theories to see the ma-
chinery of renormalized perturbation theory in action, unencumbered by additional
complications that multiple interactions, fermions and gauge fields entail. In particu-
lar, we shall see Feynman’s trick of converting a product of propagators to an integral,
and the method of dimensional regularization as a way to introduce an ultraviolet
cutoff.

Yukawa theory is the first quantum field theory we encounter in which additional
interaction terms have to be added to make it renormalizable. Multiple interactions
lead to many one loop diagrams that have to be evaluated, and also to certain compli-
cations in the computation of beta functions and anomalous dimensions. Results
derived in this section are also used for electromagnetism and nonabelian gauge theory
coupled to scalars.

Calculations for ¢3 theory in this chapter have been adapted from SREDNICKI.

2.1 Cubic self-interaction

Scalar field theory with a ¢3 self-interaction is described by a Lagrangian of the
form

1 1 1
L=—2240"$0,¢ =S 2uyM’$* + 5,248 +Y §. (2.1)

By dimensional analysis, we notice that in d dimensions, the cubic self-coupling has
mass dimension of

[x]= %(6—d). (2.2)

Interactions in quantum field theory are the most interesting when the coupling is
dimensionless, therefore we shall study &° theory in six spacetime dimensions.

The Lagrangian can be organized into free, interacting, and counterterm pieces as

follows,
Ly=—2ardd,é—m2g?, (2.3)
2 ¥ 2
L= %Z%xgb?’ v I, (2.4)
L., =_%(zgzs 12443, b— %(ZM— DI+ Y ). (2.5)



In what follows, we shall study one-by-one the kinds of one loop corrections that
occur with a ¢ interaction.

2.1.1  Cancelling tadpoles

For the validity of the LSZ formula, vacuum expectation value of the field is required
to be zero, (0]¢(x)|0) = 0. Graphically, the vacuum expectation value equals the sum
of diagrams with a single source, with one source removed (Figure 2.1).

-4 O
Figure 2.1: Tadpoles in scalar ¢3 theory.
To the lowest order in x, we have
o 1.1 o1 ,
(0]h(x)|0) = <zY + 5(1%);A(O)> d y;A(x —)+ O(x"). (2.6)
Therefore, to have (0|¢(x)|0) = 0, we must choose
1

Y= EixA(O). (2.7)

However, the integral

d°k 1
20= | S e

(2.8)
is unbounded. The divergence can be isolated by analytically continuing the integral
to d = 6 — ¢ dimensions,

dek 1
2r)d k24+M2—ie’

A0)= ﬂff (2.9)
where the parameter # with dimensions of mass has been introduced to keep the
dimension of A(0) unchanged.

In the integral f d?k, we can view the integral over k% as an integral over a contour
that goes from —oo to +o00. We can do a Witk rotation k% — E°, so that the contour
runs from —i oo to +i00. Aslong as the contour does not pass over any poles while
making the rotation, the value of the integral remains unchanged. We can now replace
k by a Euclidean vector k, given by é]- = k]- forj=1,...,d—1,and éd = k% We note
that

k2:é2:é12+---+é2, (2.10)

and d%k = id%k. Asa result, we have

f dk 1 _i”f dk 1 (2.11)
# Q) B2+ M2 —ie y ) b2 4 M2 —je '



where the integral now is over a Euclidean variable, and we can use the formula

dr 1L2\a _ _é é
J d /ed _(kZ) :r(b a 2)F(a:lrz)D_(b_ﬂ_d/2) (2.12)
2m)* (k2+D)r (4m)d2T(b)I(E)
to evaluate it.
We use
F(—n—i—x):(_l)n 1 +ik_1+0(x) (2.13)
n! | x r o ’ ’
and
A =14 %lnA +0(2), (2.14)
to expand in powers of ¢
dy, 2N\ €/2
lasf d%k ] r_ 1 r<_2+£><4n,u>
Crf ez Gop Vo 2N\
1 /2 3 €, 4mp? 5
= (Z 4210061+ 0
2(4n)3<€ ]/+2+ (6)>< +2 n—o +O(e )>
1 /2 3 47 0?
=—-— —+1 O(e) ), .
2(4n)3<6 }/+2+ n—5 + (e)> (2.15)
so that ,
1 x (2 3 4np ,
Y=—- T4l 0, 16
4(47r)3<6 }/+2+an >+ (%7) (2.16)
which, in the ¢ — 0 limit, is formally infinite.
2.1.2 Corrections to the propagator
The exact scalar propagator in the Lehmann-Killén form is
A(/ez)—;+foods (s); (2.17)
TRimr—ic ), PP e 7

where p(s) > 01is called the spectral density. From the above, it is clear that the scalar
propagator has a pole with residue 1 at &% = —M?.

At one loop, the propagator receives the corrections from diagrams in Figure 2.2. We
have

%A(kZ) N %A(/ez)[iﬂ(/ez)]lA(/ez)+m , (2.18)

l l

where

2 d
m(/&):%(m)z(%) f %A(lz)A((k+Z)2)—i(Ak2+BM2)+O(x4), (2.19)

whereA:Z¢—1andB:ZM—1.
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Figure 2.2: One loop correction to the scalar propagator in ¢° theory.

If iTI(k?) is defined to be the sum of all 1 P1 diagrams with two external lines of momen-
tum k, the exact propagator A(k?) can be written as a geometric series in zI1(k?),

SR = AR+ A<k2>[ (R |~ AR

l

(kz)[ (/ez)] Ak (/ez)] A(k?) + (2.20)

l

so that . )
A 2 g = . .
(&%) AR)T_II(E2) k2 + M2—ie—TI(k2) (221)

The pole of residue 1 of A(k?) at k? = —M? means that II(k?) must satisfy the follow-
ing

I(—M?)=0 and II'(—M?*)=0. (2.22)

To simplify the integrand on the RHS of (2.19), we use Feynman’s trick

A1 An - f dF”(x1A1 + "'ann)_n’ (2'23)
where .
Jan:(n—l)!f dxl...dxné\(xl-l-"'-Fxn—l), (2"2‘4)
0
sothat [dF, =1.
5 ) 1 1
A(IA(R+ 1)) =

2+ M2 (k+1)2+M?

:flalx[<1—x)<12+/l42)+x((/e+1>2+Mz)]_2

0

:de[(z +xk)? +x(1—x)k? + M2
:de[qz—kl)]_z, (2.25)

with g = [ 4+ xk and D = x(1—x)k? 4+ M?. We have

f (ddf ADA((k + 1)) f f 2+D)2 (2.26)




II

After Wick rotating the ¢° contour and introducing the fake parameter i to keep the
dimensions of the integral unchanged, we can use (2.12) to do the integral,

. f d* 1 _.~€f d* 1
# ) eri@+Dr =" ) 2ny (@+Dy

. 2N €/2
— ! r<—1+5> )
(4m)3 2 D

~2

|
<

+
+
5

2
+1+ln%+21n}%+0(6)>D, (2.27)

Il
|
—
~
ﬁN
~
[53]
/N 7N 7N N

AN NN AT NN
o

where we have defined u? = e 747 3?, and
k) =2 J dxD mﬂ% —a<1 +1 +1n/%><%/e2 —|—M2>—(A/e2 +BM?)+0()

D pfape(l ! ﬁ)}_ 2[ <1 1 ﬁ)}
deln /e 6<€+2+1nM [ Bte( 245+ d

where we have defined @ = x?/(47)>. We choose A and B of the form

afl 1 u 1 1 u
A:—g<z+§+lﬂﬂ—4+KA>, B:_a<;+§+lnﬁ+KB>’ (228)
so that the Z factors are
a/l 1 U
Z¢:1—Z<;+§+lnﬂ—/[+KA>+O(a2), (2.29)
11 H“ 2
Zy=1—a(-+=-+4+In—=+4+Kz )+ O(a?), (2.30)
e 2 M

where K, and Kj are numerical factors set by requiring II(—M?) = 0 and II'(—M?) =
0.

2.1.3  Vertex corrections

At one loop, the ¢> vertex receives the following correction, due to the diagram in
Figure 2.3,

d®l

2 AL)A((ky+)A((ky+oy+1)), (2.31)

iVi(ky,ky k) =iZ, x+(ix) <1>3f

where i Z, x is due to the original vertex, and in writing the correction due to the loop
diagram, we have taken Z, = 14 O(x) (atleast), so that the vertices contribute 7 x.
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Corrections to vertices of this diagram are lumped into higher order corrections to
the vertex function Vj.

Figure 2.3: One loop correction to the ¢’ vertex.

In computing the integral on the RHS of (2.3 1), we use Feynman’s trick (2.23)

A(I)A((ky + 1)A(ky + ky + 1))
1 1 1
T2 M2 (k)24 M2 (g + ey + )2+ M2

- f AE[xy(12 4 M) + (s 4 17+ M) 4 (kg oy + 12 4 142)]

= J dFj[(l _xlkl + X3/€2)2 + xelklz + xZX3k22 + X1X3]€32 +M2:|_3
:JdF3|:q2—|—D:|_3, (2.32)

where g = [ —x,k; + x5k, and D = x,x, k7 + x,x3k7 + x, x3k3 + M?. With d®] = d°q,
we write the integral as

f d°l APA((ky + D) A((ky + oy + 1)) = f dF, J

d°q 1
(2m)° )

2nf @ 1Dp (2.33)

We see that this integral diverges. Asbefore, we can isolate the divergence by analytically
continuing the integral to d = 6—e¢ dimensions, and then taking the ¢ — 0limit.

After a Wick rotation, we have

ddq 1 e ddq- 1
J (27)d (g2 + D) =iy J (27)d (42 +D)3’ (2.34)

where (7 is a parameter with dimensions of mass to keep the dimensions of the integral
unchanged in d dimensions. The identity (2.12) can be used to do the integral over

q.
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dig 1
(2m)? (> + D)

1 x? € g /2
= - T -
Z"Jr2(47r)3f0“?3 <z>< D >
:Zx+laJdF3 g—}/+O(()><1—i—£ln

=Z,+ a< Jd}gln

where we have defined @ = x?/(47)’, and used f dF; = 1,and (2.13). If we define
u? =4me™7 3% and set Z, = 1+ C, we have

V;/x= Zx+x2ﬁ€fa’F3

4r?

+O<ez>>

O(c >>, (235)

V3/x:1+c+a[1+1nﬁ]—1a dEh 2 0@ (230)
€ 2 m?

m

We can absorb the divergent 1/¢ and the unphysical constant y into Z,, by requir-
ing
1 <
C=—a|-+In—+K-|, (2.37)
€ M

where K- is some numerical constant, so that
_ 1 H“ 2
Z,=1—a —+1nM+KC + O(a”), (2.38)
€

where K is set by V3(0,0,0) =

2.1.4 Betafunction

On comparing the Lagrangian with renormalized fields and parameters (in 6 — ¢
dimensions),

1 1 1. ..
L=—>7404$3,¢—ZyM'$*+ 2 Zxil$* +Y 4, (2.39)
and the Lagrangian with bare fields and parameters,

1 1 1
L:—53”¢03#¢0—5M§¢é+;xogéngYogﬁo, (2.40)

we have the following relations

$o=2]"¢ (2.41)
My= Z;l/ZZ;fM (2.42)
xo= 272, 1 (2.43)
Y,=2,"%Y. (2.44)

¢
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For & = x*/(47)*, we have

ay= Z?Ziﬂ‘a.

We have computed the Z factors to one loop,
a
Z,=1——+0(* R
é ot (o)
Zy=1-2+40(),
€

Z,=1—2+0(?).
€

To proceed with the calculation of the beta function, we define

K(a,€) = m(z;zg),

and note that, in general,
K,(2)

6”

K(a,e):i

n=1

With the form of Z factors as above, we have

K(a,¢)=In :<1 — %%>_3<1 _a%>2]

()

[ a1
:ln 1__a_+...}

so that K (2) = —3a/2+ O(a?).

(2.45)

(2.49)

(2.50)

(2.51)

On physical grounds, the bare fields and parameters must be independent of the fake

parameter u. Therefore, from oy = Z;Z' 72 ¢, we have

_dlng,

_dln,u

d1n<z;3zg> e

dlnu dlnu
_ JK(a,¢) da +l da

da dlnyu adlny+6
1 &K (2)\ da
_<;+; €” >dlnlu+€’

so that

dlnu

(2.52)

(2.53)
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In a renormalizable theory, the left hand side of the above equation should be finite,
and therefore, powers of 1/¢ on the right hand side must cancel. We should have,

da
dlnyu

=—ae+ B(a). (2.54)

Comparing Equations (15) and (16), gives

3a?

Bla) = K{(a) = =2 +O(&). (255)
2.1.5 Anomalous dimension of mass
Anomalous dimension of mass is defined as
1 dM
= — ) .56
Yu(@) Mdlng (2.56)

Proceeding as before, we define A(a, ¢) = ln<Z;1/ ZZL/Z), and note that

A(a,e)

€

$a o5

With the Z factors as above,

—1j2,12\ _y [ (2l —1/2< _ 1)1/2
ln<Z¢ ZM >_ln_<1 6E> 1 af

i 1 al
-ul(£30-3)

n_< +12€ 2¢

:In'1_5_“1}

L 12 €

_ _5_0‘ 2 1 -2

= (=2 +0(e)-+0(), (2.58)

so that A; =—5a/12+ O(a?).

The bare parameter M, must be independent of the fake parameter u. Therefore,
from My = Z_1/221/2M, we have

é M
O_dlnMo
~dlnpy
—1/251/2
B dlnu dlnu

_ JA(a,¢) da 1 dM

da dlny—i_ﬁdlny' (259)
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_ JA(a,€) da
V(@) == dlny dlnyu
(), 21

€ €?

o Jea—pla)

= aA/(a) + powers of 1/e. (2.60)

For a renormalizable theory, y;, should be finite and therefore the powers of 1/¢ on
the right hand side must cancel. Finally, we have

VM(“):—E‘FO(az)- (2.61)

2.1.6 Anomalous dimension of the field

Anomalous dimension of the field is defined as

y¢(a)_§ ding (2.62)
Using the form of Z $ above,
(1= E L. ) =& 2
InZ, _ln<1 o + >_ o + O(a”). (2.63)
And therefore,
1 d ll’lZ¢ da
Tl "2 Jda dlnpu
1 1
= §<_§ +-e- >(—ea + B(a))
= 1% + powers of 1/e. (2.64)

In a renormalizable, theory, Y should be finite and therefore the powers of 1/¢ on
the right hand side must cancel. Finally,

ro(@)=13+0(). (2.65)

2.2 Quartic interaction
Scalar field theory with a ¢* self-interaction is described by the Lagrangian
L=—17,0043,6— 22, M>¢— L 7,0¢". (2.66)
2 2 41
We notice thatin d dimensions, the mass dimension of the coupling is [A] =4—d, and

is therefore dimensionless in d = 4 spacetime dimensions. Hence, the loop integrals
in this section will be over four dimensions.
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As before the Lagrangian can be organized into free, interacting and counterterm
pieces,

1 1
Ly=—>34$d,p—M*¢%, (2.67)
1
L, :—ZZAA¢4+L“, (2.68)
1 1
Lo=—(Zy— 1)§au¢aﬂ¢—(zM— 1)5M2¢2. (2.69)

For the quartic interaction Z;A¢*, there are no contributions to the vacuum expecta-
tion value of the field, (0]¢p(x)|0) =0, because there are no connected diagrams with a
single source. Therefore, there is no need to add a linear term to cancel tadpoles.

2.2.1 Corrections to the propagator

At the lowest order iII(k?) receives corrections from diagrams of Figure 2.4,

: 1, /1 d*l
1Ly joop = E(_M)<Z>f (27‘{,’)4A(l ). (2.70)
[
//—’k\\
Bk k k
T SEEe > R SRR - mm - >

Figure 2.4: One loop correction to the scalar propagator in ¢* theory.

To deal with the diverging integral above, analytically continue the integral to d = 4—¢
dimensions and do a Wick rotation

5 1, (41
H<k )45 loop — 2/1# f (27‘[)d Z2+M2
1
2

A € 47r,[22 /2 )
_ (4ﬂ)2r<—1+§>< = > M

1 A /2 47 0
= S4H1+41 M?

2(47r)2<6+ L7 >
_ e <1+1—1n%> (2.71)
C (4m)2\e 2 ) 7

where u? = e7747 1%, Next, there are the counterterm contributions,
TI(k?),, :—(Z¢—1)k2—(ZM—1)M2. (2.72)

Total contribution to II(k?) at one loop,

4o _1n?> —(Zy—Dk>—(Zy— 1)M?. (2.73)
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We choose Z factors such that

Zy=1+K,+0(X), (2.74)
_ A (11 M 2
Zy=1+ (4n)2<;+5—?+KB>+O(/{ ). (2.75)

K, and K are numerical factors set by requiring II(—M?) = Oand IT'(—M?) =

2.2.2  Vertex corrections

There are no three point vertices in ¢4 theory. The four point vertex receives the
following correction at one loop due to the diagrams in Figure 2.5,

2 4
iV4(k1,k2,k3,/e4):—iZA/1+;(—i/l)2<%> f(jﬂ§4A(12)A((Z+k1+k2)2). (2.76)

ky+ky+1 0 N kiR N kR

D N * ¥ 4 > F% 2 \ LN
ky \\I’ \ Ry 4 ks \\I’ \ Ry 4 ky ! 7 ks
kl //\ /I k4 kl //\ /I k4 /€1 \ /I N kz

« L s « L % « l» %

Figure 2.5: One loop corrections to the ¢* vertex.

The integral above diverges. We use the usual bag of tricks.

4 d
[ GapAIA b )= [ APk ) 67

AUDA( + by +k,)? de D) (2.78)

where g = [ + x(k, + k,) and D = x(1—x)(k; + k,)* + M>.

o [k i [ L
; o2\
- <4¢>2r<2><4DM )
:(42;)2@—1 A%-I-lnﬁ), (2.79)

where u? = e T4 2.
V4//1_—ZA+ fdxln——i— —|—1n—> (2.80)

and 1)
zFHTﬂZ( +1n M+KC> (2.81)
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where K- is a numerical constant set by V,(0,0,0,0) =—A.

2.2.3 Beta function

As before, we compare the Lagrangian with renormalized fields and parameters,
L=—17,0040 86— L7 24+ 17 254" (2.82)
T2 ur M oAt e '
and the Lagrangian with bare fields and parameters,
L=—10rg.2.¢—tizgr+ Lo g (2.83)
=7 0%uPo= 5 M0 PoT 1 40Po 03

for the following relations

o= Z;/zqﬁ (2.84)
M, = z;l/zzﬂl/zM (2.85)
do=2372,5A (2.86)

Computed Z factors to one loop are

Zy= 14+0(X?) (2.87)
_ A1 2
U I B

Z,=1+ =y + O(A). (2.89)

As before, we define L(A,¢) =InZ;?Z, and note that

é
® [ (A
L(Ay¢€) :Z ’:EZ ) (2.90)
n=1
Using the form of Z factors above,
e 321 > R )
an¢ L= ln<1 * 16n2e) 16m2¢ +O(4), (2.91)

so that L;(A)=3A/1672 + O(1?).
Results of the previous section hold with @ «— Aand K « L:

dA
dlnpu

=—Ae+ B(A), (2.92)

with B(A) = A2L/(A) so that

302

B(A) = @‘FO(/{B)- (2.93)



20

2.2.4 Anomalous dimension of mass

Define A(A,¢) =1In Z;l/ZZ;/[/Z =%, ¢ "A,(A),and using the Z factors as above,

12
1n<z;1/zzj/2>:1n[<1+il> ]: A L0, (o4)

1672 ¢ 3272 €

so that A;(A) = A/327. Analysis of the previous section holds, and we have

P = M) = s +0(2) (295)

2.2.5 Anomalous dimension of the field

Anomalous dimension of the field is defined as

7/(;5(/1)_ E dln/,t . (2"96)
AsZy=1+ O(A%), we have In Zy= O(A?) and therefore
17In Zy d)
Both dInZy/d Aand d A/d In u are O(A), therefore yy(4) = O(A).
2.3 Yukawa Theory
Yukawa interaction in four spacetime dimensions is
LYukawa: 8¢$Z¢ (2“98)

Notice that the Yukawa coupling g is dimensionless in four spacetime dimensions.
However, an interaction of this kind will lead to diverging three-point and four-point
scalar vertices. To absorb these divergences, we must introduce new couplings cubic
and quartic in the scalar field ¢. We also need a counterterm linear in ¢ to cancel
nonvanishing tadpoles.

Renormalized Lagrangian for Yukawa theory in four spacetime dimensions is

Lo=ifdd—miy—30"$3,4— ¢ (299)

Li= 2,8+ 5208 — L2 + L, (2.100)
Lo=(Zy—=1)i¢d$—(Z,,—1)md¢
_%(z¢_1)9#¢aﬂ¢_%(zM_1)M2¢2+Y¢. (2.101)
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2.3.1  Cancelling tadpoles

Validity of the LSZ formula requires vacuum expectation values of the fields ¢(x) and
¢ (x) be zero. While the Yukawa interaction does not result in any tadpoles involving a
fermion source, there are scalar tadpoles that need to be cancelled by the counterterm
Y ¢ (Figure 2.6).

Figure 2.6: Scalar tadpoles in Yukawa theory.

We have
1

1,. . 1 . 1
O$10) = (363 )a0)+ 1ig)(§ ) Trs@)+ 7 ) [ d*y At —),
(2.102)
where §(x) is the (position space) free fermion propagator. To cancel the tadpoles

iY:—%xA(O)+gTrS(O), (2.103)
where I
1
A(O)—f QR T M—is (2.104)

d*k 1
Qr)tk24+m2—i8’

TrS(O):4mJ (2.105)

We evaluate the integrals in the (now) standard way,

dig 1 iD (2 u?
¢ = —+1+In—+0(e) |, .106
a f (2m)d g2+ D 167‘C2<€ e D * (€)> (2.106)

where d =4 — € and u? = e 747 3. Putting everything together

xM? gm3><1 1 M>
Y = — 22— )| =4+ = —In— ) +higher order terms, 2.10
<16712 272 J\e 2 B 7 & (2.107)

which diverges in the ¢ — 0 limit.

2.3.2 Corrections to the scalar propagator

At one loop level, iTI(k?) receives contributions from diagrams in Figure 2.7.

[
k+1 k+1
"0k kX 'k k Q k k k
e | S B R - - B e G S
‘-
[ [

Figure 2.7: One loop corrections to the scalar propagator in Yukawa theory.



T 00 = 22( 1) [ L Ak +1
M a8 = 50075 | GabIBMR 07 (2108
We know .
2 2\
where g = [ + xk and D = x(1—x)k? + M?, and
dég 1 1 /2 D
G = -—ln—=). .
Nf(zﬂ)d(é“rD)z 167T2<f n#2> (110)
dd‘ 1
II 2 s _~e 2
1 D M
— -—Iln— —2ln—
2(16n2>f d’“<e " “y)
2
== <1—1nﬂ—4—1fdxln2> (2.111)
1672\ € u 2 M?

Diagram with the ¢* loop is identical to what was calculated in pure ¢* theory,

K)o 1) = 35 5( £+~ ot (112)
Finally, there is the diagram with a fermion loop,
Mg )= 0GR (1) [ SLTISOSELN). )
With
S(f)= kzjfn—tia (2.114)
the numerator of the integrand can be evaluated separately
Te[(—] + m)—f— ]+ m)] = Te[—L( + &)+ m?] = 4N, (2.115)
where N =—[(I + k) + m?. As before, we simplify the denominator
o (/e+1)12+mzzjdxm’ (116)

where g = [ 4 xk and D = x(1— x)k? + m?. In terms of ¢, we have

N =—¢*+ D + terms linear in g. (2.117)
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After Wick rotating and analytically continuing the integral to d = 4 — ¢ dimen-
sions,

ddq —4°+D +D
H¢ Ioop 4g lu f J 2+D

__8 1,2 3g
__4_7'L'2<;+g>/€ 27'52( fdeln—. (2.118)

Finally, there are the counterterms

T (k) = —(Zy — Dk* +(Z), — )M, (2.119)

Finiteness of I1(k?) requires

g’ (1
Z¢:l—m<;+ﬁnite>, (2.120)
2 A 3g2m?\/1
Zu=1+ < 622 | Tom2 27r2M2>< +ﬁmte> (2.121)

2.3.3  Corrections to the fermion propagator

Lehmann-Killén form of the fermion propagator,

S(k) _%—i_m J ds _%/01(5)"_\/?/02(5)

_k2+m2—18 k2+5—l8 } (Z.IZZ)

where p;(s), 0,(s) > 0 are spectral densities, shows that the exact propagator has a
simple pole of residue 1 at f = —m.

If we define i3(§) to be the sum of all 1 PIdiagrams with two external fermion lines
carrying momentum k, the exact propagator can be written as a geometric series,

1 1 1

SS(H) = Sb)+ = SOLSGS )+ = SRS S+
1

=S —ZFE)SET (2.123)
Using S(¥)~! = f + m, we have the inverse of the exact propagator,
SE T =F+m—id—2(¥). (2.124)
As before, the pole at # = —m implies
Y(—m)=0 and ¥'(—m)=0. (2.125)

At one loop, the only correction to the fermion propagator comes from the diagrams
in Figure 2.8,

B B=G27(3) [ a5+ (2126

i (27)*
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Numerator of the integrand is N = —f — / + m. The denominator can be simplified
to

! ! —fdx; (2.127)
24 M2([+k2+m2 (4>+ D)’ 127

where ¢ = [ +xk and D = x(1—x)k*+m?+x(M*—m?). In terms of ¢, the numerator
becomes N =—¢ — (1—x)f + m.

-
ko vk k k
k41

Figure 2.8: One loop corrections to the fermion propagator in Yukawa theory.

Putting all of it together, we have

ald- ~€
Yoo deNf
p 2n d(qz+D
= dxN ——ln—
167r2 € /1
g’
16712 (—# +2m)-— 7_[2 delnlu—. (2.128)

Finally, there are the counterterm contributions

th(%):_(z¢_1)%_(zm_l)m (2“12‘9)

Finiteness of ¥(§) requires

2
Z¢:1—g—<1+ﬁnite> and Z, —1+g—<1+ﬁn1te> (2.130)
€

2

2.3.4 Corrections to the Yukawa vertex

Contributions to the Yukawa vertex at one loop come from diagrams in Figure 2.9,

Vytkuky =iz +er(5) | S aESHADSHAD  Gas)
3 4
#gPi0(1) | S SOAU—kIA=17). (2132)

Note that the second integral does not diverge, and therefore will not contribute to
the diverging part of Z .- We only need to do the first integral.

We have

gsf Tl APSHApS i) £ j (‘”1 (K =)+ m) k=] +m)

(27) 270)d (12 + M2)((ky + 12 + m2)((ky + [ 2 + m2)
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\
vp \J

Figure 2.9: One loop corrections to the Yukawa vertex.

The denominator can be simplified,

(=) +m) (= +m) —de( 1
q

(12 4+ M2)((ky + 1P+ m2)(ky + D2 +m?) ) 7 (g2 + D)

(2.133)

In terms of ¢ the numerator becomes

N =—q* + (x, B, + (x; — Dy + m)((x; — 1)}, + x,4, + m) + terms linear in ¢
:_q2+ﬁa (2‘134)

After Wick rotation we have

ds _
zgpfdafd" FP+N

q*>+D)’
g 1 D 1 N
==|—+-+-|dEIn—+- | dF,— .
87t2< (+4+2J 3nlu2+4f 3D>> (2.13%)
using
dq ¢ 1 /2 1 , D
~e _ 2 1 D g , "
: J(Zn)d(42+D)3 16n2<e 2 nlu2+ (f)> (2.136)
and L
~€ q_ 1 1
= O(e). .
: f(Zﬂ')d (2 +D)? 522D 7O (2.137)
Finally,

2

Vy (b ky) g = Z —g—< +ﬁn1te> (2.138)

8712

and we can absorb the divergence in Z g to have

g’ (1
Zg:1+8—2<;+ﬁn1te>. (2.139)

T
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2.3.5  Corrections to the three point scalar vertex

At one loop the three point scalar vertex receives corrections from diagrams in Fig-
ure 2.10.

4
iV (kyy ks k) = i 7, x+(zx)< > J CLADA(E,+ DDAk, + B+ 1)

(2m)*
LTSS+ ))S(Hy + Ko+ )]
3

30 d4
)
2 4
+ 205 ) j TLAPA+1D) (2140)

1

+a-1)ig)(5)

(27
2 1 (27)

Contribution from the first diagram is finite, and does not contribute to the diverging

partof Z,,.

\\\ kl k3 /// \\\ kl k3 ///
\A\ l /A/ \K\ l /‘/
N > -

oA
ki+1 kit k+1 b +1 ki +k,+1
(
Ak, Ak,
. k,+1
\&\ P I
ky S \ & +2inequivalent permutations
k3 PRGN l /
v R

Figure 2.10: One loop corrections to the three point scalar vertex in Yukawa theory.

Let’s first calculate the diagram with a fermion loop. Divergent contribution comes
from the part of the numerator quadratic in /. We have

N~ T (-] + m)3:| = —12mI? + terms independent of /. (2.141)

The relevant part of the integral is

dj ~el_2 24 3; 3
24img3de3J arl W dkidiia < +ﬁn1te> e <1+ﬁnite>
27)d (124 D) 1672 \¢ 2 \¢

(2.142)

Next, we calculate the diagram with a <;53 vertex and a ¢4 vertex.

31;{/1 dig € 3ixA
f f Z—I—D 32n2<——jdxln—> (2.143)
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We put both these pieces together,

3
V3/x:Zx—<i—3mg ><1+ﬁnite>, (2.144)

16772 w2

€
so that . ,
3 3 1
Z, =1+ 278 <——|—ﬁnite>. (2.145)
1672 2% €

2.3.6  Corrections to the four point scalar vertex

At one loop, the four point scalar vertex receives corrections from diagrams of Fig-
ure 2.11.

iV, (kg ey by o) =—i 2, A

, 2 d*l
#3R(5) [ Ak )

4 4
#3000 (7)) | S AUDAk+ DIl +y + DA~k )

we(-1ig) (1) | o TISOISUL+ S+ B+ DS~

1

4 )’/ 4 /;’/

N ki+k,+1 ok Vf‘lﬁi/ ky, ki - 4l k,
A ‘ :

L | S ki+1v Al—Fk, k+ly Al—F,
2 \ Z / ~ 4 : \

( \\>’/ ‘\ k : > L /e »-
/// /f ””” k , > k
2 ¢ Rithy+1 " T2 Rty "3

Figure 2.11: One loop corrections to the four point scalar vertex in Yukawa theory.
Like in pure ¢* theory, the first diagram has 2 more inequivalent permutations of
external legs.

The first diagram is identical to the one in pure ¢* theory and therefore

342 /1 L
Vi bt loop = an<; + ﬁmte). (2.146)

The second diagram is finite and has no contribution to the divergent part of Z,.
Divergent part of the first diagram comes when the numerator includes /*:

N~(—J+ m)t = (lz)2 + lower order terms in /2. (2.147)
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We have,

ddl_ ~e([2)2

iV4,¢ loop = _24Zg4f (

m)d (12—|—D)4
_ 24igt T304 2)<47W€>6/2
1672 T(4)M(2—35)\ D

-
:—”—g<§—§—1n2+0(6)>.
e 6 u?

Putting both these parts together

4
V,/A=—Z,+ <i — 3i><1 +ﬁnite>,
7 €

_ 34 3g
Z,= 1+<1677:2 7-52/1>< —I—ﬁn1te>

so that

2.3.7 Beta function
Comparing the Lagrangian with renormalized fields and parameters,
. n - 1 1
L= LZ¢¢57¢ —Z,myd— —Z¢3“¢9 b— —ZMMzng2
~e ~E 1 ~e
P+ 1 1~ Lz, 0
and the Lagrangian with bare field and parameters,
.7 - 1 1
L=idod bo—mothotho— 58#%8#% - §M§¢c2>
- 1 1
+ goPododo + 5"0958 - Eﬂogﬁé,

gives the following relations

0= Z:/z%b
My = Z;me
$o= Z;,/ng
My= z;l/zzij
=2,'7,""z,1 g
Xy = 2;3/22;{,&5/2%
Ao =Z 722,55 A

<75

(2.148)

(2.149)

(2.150)

(2.151)

(2.152)
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Z factors to one loop are

Zy= i (2.160)
Zn=1 +<16;:22M2 * 16/1752 - ;ii;’;i)% (2.161)
Zy=1 15;2% (2.162)
Zm:1+88—;% (2.163)
g* 1

Zgzl—l—@; (2.164)
Zx:1+<%i2—3:;i3>; (2.165)
zA:1+<%—%>;. (2.166)

To proceed with the calculation of the beta function, define
Gle, g, %,A) = m(z;lz;ng) ZEM (2.167)
K(e,g,%,0) = ln<Z;3/ZZX> :ZM (2.168)
L(e,g,%,)):ln(Z?ZO:%%ﬂx’/{), (2.169)

and using the Z factors above, compute first order coefficients. We have

2 -1 2 (\—1/2 2
1—1/25 \ _ g1 _ g1 &1
In(2;'Z, Zg>_ln[<1 16n2€> <1 Wf) <1+8n2(

2
:ln|:1+5i1]

16712 €

— ey, (2.170)

—3)2 _ g°1 34 3mg’\1
(Z, ZQ—I“K“@E) <1+<@‘ w2 )
30 3g% 3mgi\1
:1’“[1+<1(mz T8 H

30 3g? 3mg’\1
:< —|—i i >——+—---, (2.171)

1672 872 m2x Je
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and
2 —2 4
27 )= n|(1— 81 A 38\
ln<Z¢ Z/1>_1n|:<1 47T2€> <1+<16n2 2] )€
37 g2 3g*\1
=In[1 = =)=
| +<167‘c2+27'£2 7z2/1>e]
[ 32 g2 3g*\1
~(art ey (172)
So that
5g2
G1(ga’fs/1)=@+“' (2.173)
30 3g% 3mg’
Ki(g,%,A)= o2 T 82 ix (2.174)
37 z2 3g¢
(gt )= g2y =+ (2.175)

1672 272 m2A

On physical grounds, we require the bare parameters gy, x4 and A, to be independent
of u. This condition leads to

M8

< JdG, dg N aG, dx N aG, dA >i+ dg L8 g (2.176)
§ dg dlny 8 0% dlnp Sy diny/)er  dlny 2 7 7
<x3Kn dg +%3Kn dx +xaK" dA >i+ dx L (2.177)
dg dlnpu dx dlnu IAddinu)en  dlny 2 7 7 77
dL, dg dL, dx dL, d2
</1 dg alln/u-i_/1 dx dln,u-i_/1 dAdlnu

n=1

NE

n=1

>i+d—/1+e/120. (2.178)
e dlnu

NE

n=1

Requiringd g /dInu, dx/d1nu and dA/d In u to be finite in the ¢ — 0 limit means

that we can write

dg _ eg
m__7+ﬁg(gaxs/l)a (2179)
dx €x
dlny __7+ﬁx(g,xa/1)a (Z.ISO)
dl{ :_6/1+ﬂ,{(g’%)/1) (2.181)
dlnp
Substituting and matching powers leads to the following expressions for the beta
functions
_ (8  x2 2
/Bg(gaxak)—g<28g+28x+/13/1>(;1, (2.182)
_fg ¥ ;2
ﬁx(g,%,ﬂ)—%<2 £ + P +/13/1>K1, (2.183)
g d xd d
=A S+ 5+ A )L .
Pz ) A(z 8g+23x+/13/1> ! (2.184)
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On substitution and simplification, we get

=28
Be(g,x,A)= 167':2+ . (2.185)
3g?x  3mg’  3xA
_28x 186
Bulgrh =57 M8 2, (2136)
2 2
/5,1(&%,/1):—3/1 +—/1—3i+ . (2.187)

1672 272 2

2.3.8 Anomalous dimension of mass

Defi
o 12512\ _ 5 An g%/l
A(Eag’x,/U:ln( > Z (2188)
n=1
and
B(e,g,x,ﬂ):ln<Z;lzm>:ZM. (2.189)
n=1

With the Z factors as above, we have
2\ 72 %2 A 3g2m?\1 12
In(Z;"?ZY*) =1n| (1- 2= 1 _ Z
n< ¢ > 42 ¢ T\ Tz T 16 ~ 20012 )

14 ( 2 g & (e
=In oS (1= )\Z
3272 32m2M?2 0 8m2 M2 €

A N X +g2 . 6m? 1+ (2.190)
= —_ _— — e I
3272 32mM? 0 8m? M? ] e ?
and
| g2 1\ g1
n(2;17,,)=ln| (1-£2) (142
My “m n[< 167'526> < 872 ¢
3g2 1
=In|1 -
n[ +167'526:|
3g% 1
~lente (2-191)
So that
A x? g? 6m? 3g2
! 327’52+3277:2M2+87'52< M2> T (2.192)

On physical grounds, M, and m, should be independent of u. Therefore, we must

have
_dlnMy dlnM  dA

N dlnu _dln‘u+dln,u’ (2.193)
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so that
dA
1d1ny3g dlny&’x dlnu dA €n
x d d
(&% 29 A f1 .
<23g+28x+/13/1> 1+ powers of 1/e. (2.194)

Finiteness of y;, in the ¢ — 0 limit means that the powers of 1/¢ must all cancel.
Substituting A, in the above expression gives

2 2
6m X A
H==2_(1- + F .
Yulg )= 877:2< M2> 327022 3272 (2.195)

Similarly, for the fermion we have

(2.196)

2.3.9 Anomalous dimension of the field

We have

=——-, (2.197)

and the anomalous dimension of the scalar field is

1dan¢
2dln,u

:_<5’an¢ dg 31nZ¢ dx San¢ dl >
2\ dg dlnyu dx dlnpu dA dlny
1 g1

}/¢(g X, /1)

=2 _4.... (2.198)

Similarly,

@ s (2-199)



and the anomalous dimension of the fermion field is

}/¢(g,x, /1) -

1dInZy
2dlnu
19InZy g
2 dg dlnyu

—— & (- L+ B,2. 1)

2872 ¢ 2

3272

33

(2.200)
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CHAPTER 3

Quantum Electrodynamics

QUANTUM ELECTRODYNAMICS IS AN ABELIAN GAUGE THEORY based on the
abelian gauge group U(1). Matter is coupled to the electromagnetic field by requiring
the Lagrangian to be manifestly invariant under a local U(1) gauge transformation by
replacing ordinary derivatives with a gauge covariant derivative

D,=0,—ieA,, (3.1)

where the gauge field A #(x) is a four-vector, and adding a gauge covariant kinetic term

for the gauge field
1 2 1 2
_ZFH Fyv:+EA/u(gfuv_8/u3v)A ’ (32')

where F,, = d,A,—d,A, is called the electromagnetic field strength tensor.

Calculations in this chapter have been adapted from SREDNICKI

3.1 Coupled to spinors

For a spinor field the kinetic term is ng_ﬂgb After the replacement d — D, we

have ) ] )
P =idd+edfd, (3.3)
and therefore spinor electrodynamics is described by the Lagrangian
1 iy S
L:—ZF'“VFW—I-ngng—mgbgb—l-egbﬂgb. (3.4)

After adding appropriate Z factors, it can be arranged into free, interacting and coun-
terterm pieces,

Lo=—1F©'F,, +idd g —miy, (5:5)
Ly :Zleﬁz¢(¢+ch (3.6)
La=—4(Z = DF"E +i(Z =0 F4—Z,—Dmdd,  (7)

where Z,, Z, and Z; are traditional names.
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3.1.1  Tadpoles

The interacting part of the Lagrangian does not lead to any contributions to the
vacuum expectation value of the fermion field: (0]¢/(x)|0) =0, as in the case of the

free theory.

There are tadpoles that contribute to the vacuum expectation value of the gauge field
A ,(x), but they all evaluate to zero. For the diagram below, the contribution is

o [ LAyt T
ol o) o (- [ SR LTI e [ 0

27T)4 pz + mz
(3.8)

because the integral is an odd function of p.

Figure 3.1: Tadpoles in in spinor electrodynamics.

3.1.2  Corrections to the photon propagator

The photon propagator receives the following loop and counterterm corrections.

k41

Figure 3.2: One loop correction to the photon propagator in spinor electrodynamics.

We have the loop contribution,

" _ oIV [ Ty M (S —fm)yt (S m)] ot
i (k)= (ze)<l.> f(zn)4 (LR £ m2) B+ mD) +0(e") (3.9)

and the counterterm

N8 =—i(Z, —1)(k*g" —k“E). (3.10)

Simplifying the numerator of the loop contribution, we get

ANF =Te[yH (=) —f+ m)y" (=) +m)]
=Ty )y )+ v #y' )+ myty']
=4l L5+ kg 4g" g —4gH gl +4gl g™ —4mgh”
— 4D 4 kED + 1R —dg P [I(L + k) + m], (3.11)
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where in the second line we multiplied everything and dropped terms with an odd
number of gamma matrices, and in the third line, traces were evaluated using

Trly#y"]=—4g" (3.12)

and
Te[y“y yPy?1=4g"" gl" —4ghf g™ +4gH7 g'"F. (3.13)

We convert the denominator into an integral over Feynman parameters,

1 1
e ) T o

(3.14)

where g = [ +xk and D = x(1—x)k?+m?, and replace / in the numerator for g,

N# =2[#]Y + kY + [FRY — g [I(1 + k) + m]
=2g"q" —q* g™ —2x(1—x)k“kY + x(1—x)k?g" —m? g

- [(3 - 1>612 +x(1—x)k2— mz}g”v—ZX(l—X)k“/e“

:2x(1—x)<k2g/”—/e“kv), (3.15)

where, in the second line terms linear in ¢ were dropped, in the third line we used
duwvee 2y & # d_ 2702
d%qq g’ f(q) =7 | d"aq7°f(q") (3.16)
to make the replacement g#g” — d~'q? g, and in the fourth line we used

2 dq 7 dq 1
G-1)] @7 (42 4 DY =p| @m) (@ + DY (3.17)

to make the replacement (2/d —1)q> — D.

Analytically continuing to d dimensions and putting everything together, we have

déq 1
STTMY — 2 ~e uv
ZH¢100P —4e” 1 deN f(zn)d 1DF

- 2
- _‘:_ezlf dx N* + finite
2 e
- 2
:—:l—ezl(/ezg“"—k”/ev)fdx2x(1—x)
2 e
ie’1 , W Lupy
:_6_77;2;(k g —kH1EY), (3.18)

where, in the second line we used

dq 1 i1
= 2 | finite, .
f(Zn')d (> +D)? 87‘[,'26+ it (3.19)
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in the third line we used the simplified form of N*” derived above, and in the fourth
line we used [ dx x(1—x)=1/6.

Finally, we have the photon self-energy

LG g

T op = T oo + et
2

— <_e_1 —(Zy— 1)>(k2gf” —k*k”)+ finite. (3.20)

672 €

For Hf Toop to be finite, we must have

e? 1
—. (3.21)

Z.=1—
3 6712 ¢

Also note that the photon self-energy is transverse, II*"k, = k #H"“’ =0, as expected
from gauge invariance.

3.1.3 Corrections to the fermion propagator

At one loop the fermion propagator receives the following corrections.

/
/\
p EP p 4
— X
p+1

Figure 3.3: One loop correction to the fermion propagator in spinor electrodynamics

We have,

. Y A B S S ARLL
oan =6} ) | G T pr

—i(Z,—=V)p—i(Z,—1)m+O(e*). (3.22)

As before, the denominator can be written as an integral over Feynman parame-
ters,

1 1
ﬂW+py+ma:fdﬁ;:5¥’ (3.23)

where ¢ = [ + xp and D = x(1—x)p? + xm?. The numerator can also be simpli-

fied,

N=yH(—p—=)+m)y,n
d=2)(p+))—dm
=—(d=2)(f+(1—x)p)—dm
2= +(1—x)p)—(4—e)m, (3.24)
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where, to get to the second line we used y#y, =—d and yhd v, =(d —2)4, in the third
line we used ¢ = [+ x p and in the fourth line we have made the substitution d =4—e.
Furthermore, the term linear in g integrates to zero and can be dropped.

Putting everything together, analytically continuing to d = 4 — ¢ dimensions and

using
[ d? 1 i1
Jo; J(Zn?d 21Dy :ﬁ;+ﬁn1te, (3.25)
we have
62
ZplB)= g | A2 NI =)+ (4= ] = (2~ 1 =2, D
e2
:—@%(ﬁ+4m)—(zz—1)[5—(Zm—1)m, (3.26)

where, in the second line we dropped all finite terms (as € — 0). To keep the self-energy,
¥(4) finite, we must have

2 2
e” 1 e” 1
Z,=1——— and Z =1——-. 2
2 87'[26 m 27'[25 (3 7)

3.1.4 Corrections to the vertex

The vertex in spinor electrodynamics receives the following correction at one loop.

Figure 3.4: One loop correction to the spinor-spinor-photon vertex in spinor electro-
dynamics.

(3.28)

: _ (1Y [ d* V(S =Fy+my (=)= +m)y,
Vi =izier +i0(7) | @y (4 pp + 2N+ piP+ w22

Writing the denominator as an integral over Feynman parameters, we have

1 1
(+ 2P+ )L+ p 2+ m)l2 f Dy (3:29)

where g = [ +x,p; +x,p; and D = x;(1—x1) p; + x,(1—x5) p, — 221, py pp + (%1 +
X, ).
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We simplify the numerator,

Nt =y (=)= py+m)yH (=)= p +m)y,
(—f +x1p1 —(1=x3) py + m)y*(—f — (1 —x) py + X, p, + M)y,
=7 dy"dy, +N*, (3.30)

where N = y(x, p; — (1= x,) p, + m)y*(—(1—x,)p; + x,p, + m)y,, and we have
dropped terms linear in g. Contribution to the divergent part of the integral comes
only from the terms quadratic in ¢, which can be further simplified,

y V. a (d_2)2
¥ W‘%n*dqzr L= v (3.31)

where in the first line, we made the substitution ¢4 5= d='q? 8a3> and in the second
line we used y,dy” = (d —2)4.

Analytically continuing to d dimensions and putting all the pieces together, we

have
q* 1
Jd f 2+D) y”gz—l—ﬁmte (3.32)
Finally, we get
2
zV/‘1 —izley“+ie}/”<e—l+ﬁnite>. (3.33)
1 loop 8772 ¢

For the vertex function to be finite, we must have

e? 1
Z, —1—8——+O( . (3.34)

2 €

3.1.5 Beta function

Comparing the Lagrangian with renormalized parameters and fields,

L=z er, cizggy—z,mig+ 2a e (59

to the Lagrangian with bare parameters and fields,

L:_%FOWFOW"‘i¢o$7¢o—mo¢o¢o+€oﬁzo4(o¢o’ (3.36)

we have the following relations,

Ay=17,"A (3.37)
Sbo:Z;/ZSA (3.38)
mo=27"Z,,m (3-39)
eo:Z;l/ZZ 17,0, (3.40)
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with @ = e? /47, we also have
aO:Z;1ZZ_1212[&Ea. (3.41)

From the previous three sections, we also have the Z factors,

Z = ———:1———, 42
! 82 e 2 € (3.42)
2
es 1 a1
Z :1———:1———, .
) = 3 (3-43)
2
ec 1 2a 1
Z,=1———-=1-""-, (3.44)
212 € T €
2
ec 1 2a 1
Z :1———: _— .
3 =l Y (3-45)
For the beta function, consider
Inag=E+Ina+elng, (3.46)

where E(a,¢) =InZ;'Z;2Z2 and due to the form of the Z factors we also have

E(a,f):iE"(a). (3.47)

By analysis of the previous chapter, we have

da
dlnu

=—ca+a’E{(a), (3.48)

and therefore, the beta function () = a?E}(a).

Note that 21222_2 = 14 O(a?), so we have (at least through O(a?))

E(a,e):—an3:—ln<1—2—al>:z—al—i----, (3-49)
e 3rme
so that E,(2) = 2a /37 + O(a?). Finally, the beta function is
202 3
B@)=22 1 o). (3.50)
7
Alternatively, in terms of e,
— 63 O 5
Ale)= 55— +0(). (3-51)

This result can be easily generalized for N Dirac fields with electric charges Q;e (i =
1,...,N). At one loop, the fermion fields and masses will be renormalized by a photon
loop as above, but we must make the replacement e — Q;e. In particular,

QZez 1 Q.Ze2
Z,,=1——+—— nd Z  =1———.
2 872 € 4 e 272

1

(3.52)
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Similarly,

2.2
Z,=1— Qe 1
872 €
The photon propagator, however, will be corrected by a fermion loop due to each of
the N fields and we must have

(3.53)

N 2.2
_ 2im Qe

Z.=1
3 672 €

(3.54)

Proceeding as before, we note that Z;;/Z,; = 1+ O(e?), therefore E(e,¢) = —In Zs,
and finally,

N 2.3
i:lQie

o TOE). (355)

Ble)=
3.1.6 Anomalous dimension of mass
As my=Z7,"Z,,m, we have
Inmy=A(a,€)+1nm, (3.56)

where A(2,¢)=1InZ;"'Z,,, and we expect A= | A, (2)/€". On physical grounds,
mq must be independent of y, therefore

O_dlnmo_é’A da 1 dm

dlnu _%dln,u—i_;dln‘u' (3:57)

Anomalous dimension of mass is defined as

1 dm
mdln,u’

Ym(@) = (3-58)

therefore,

()=—4
Tmi %)= Jdadlnpu
2 Al (a

=352 ot pla)
n=1

= aA/(a) + powers of 1/e. (3-59)

In a renormalizable theory y,, should be finite, so the powers of 1/¢ must all can-
cel.

A(a,e):lnzz_lzm:<i—2—a>1=—3—al, (3.60)
2n mw /e 2 e
so that A; = —3a/27 and therefore
3a )
Ym(@) =—-—+0(a"). (3.61)

27
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3.1.7 Anomalous dimension of fields

Using the definition of the anomalous dimension of fields, we have

_1dInZ,
T 2dlny
_17InZ, da
T2 Ja dlnp

= (5 Jcae+ Bla)
:%+..., (3.62)

vy(@)

Similarly, for the gauge field, we have

_ 1dInZ,
_Edln‘u
_1dInZ; da
T2 da dlny

= {5+ e+ Bla)

a
=— 4. (3.63)
3

ya(@)

3.2 Coupled to scalars

As before we start with the manifestly gauge covariant Lagrangian for a complex scalar
field with quartic self-interaction,

L=—(DF)ID, =M1 — L AB P — P Es (.6)

where the gauge covariant derivative, D = 8# —1eA w and A u is the abelian gauge
field. The quartic interaction is needed to absorb divergences from four point scalar
vertices. Expanding the covariant derivative in the kinetic term for the scalar field we
have,

(D¥¢)'D,¢ =341, —ieA“[(9,¢) ¢ —$1(d, )]+ e?A¥A,$T¢. (3.65)

After introducing appropriate Z factors and organizing the Lagrangian into free,
interacting and counterterm pieces, we have

Ly=—3¢$1a,6—M$l— %FWFW, (3.66)
L= iZ,eA (3,416~ SO, 2,24, $'$ LA + Loy (567)
Lo =—(y= D)2 $1 0,6 — (Zy— DM $— (2~ DF¥'E,,, (3.69)

sothat L=Ly+L,.
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3.2.1  Tadpoles

Interactions in the Lagrangian above do not give any tadpole diagrams with a scalar
source. However, there are tadpoles with a photon source as below.

Figure 3.5: Tadpoles in scalar electrodynamics.

The diagram above is proportional to

d*l I
=0 .6
J 2m)* 124 M? ’ (3.69)

because the integrand is an odd function of the integration variable /. Hence tadpoles
vanish, as anticipated by gauge invariance.

3.2.2  Corrections to the photon propagator

At one loop, the photon propagator receives corrections from the following two

diagrams.
[
-
[+k \' !
P i \ //
k k ks k k k
_ Ve — N  —> —_ _
\ R l ) /
~<./

Figure 3.6: One loop corrections to the photon propagator in scalar electrodynamics.

We have the following contributions to the photon self-energy,

v N2 [ dY QL +kR)HQRL+RY
G (/e)—(zZ1e)2<;> f(zn)‘* (T B+ M2+
. a! ‘'l 1
+(—2iZ,e*)g" <;>J (27)412+M2
—i(Zy = 1)(k7 g —kHE). (3.70)

Analytically continuing to d = 4— ¢ dimensions, replacing e — e [&f/ 2 and combining
the two integrals, we have

MJ d?l N

“E) oy R AR G7)

with
N#¥ =2l +k)“ (21 + k) —2g"((] + k) +M2). (3.72)
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Writing the denominator as an integral over Feynman parameters, we have

dil N# dig 1
e NAY .
B ) el (ks M+ M2) de J ¥ (g2 + D)’ (373)

with ¢ = [ + xk, D = x(1—x)k* + M? and

N® =21+ k2l + k)Y —2g*((1 + k) +M?)
=(2g + (1—2x)k)*(2q + (1—2x)k) —2g“"((q + (1 —x)k)? + M?)
=4q"q" —2g" > +(1—2x) "k k" —2gM[(1—x)*k* + M?]

zng<§—4>q?+u—axfw%ﬂ—2gwul—xfk2+ﬂﬂ]
=2g"[x(1—x)k? + M?]+ (1—2x)?kFEk" —2g[(1—x)*k? + M?]
=—2(1—2x)(1—x)k*g" +(1—2x)*k“k, (3.74)

where we dropped terms linear in ¢, used [d?q q“q” = g**d~'4?, and

2 diq ¢* [ d° D
<3_1> (27t)d(q2+D)2_f(Zﬂ)d(q2+D)2’ (3.75)

to make the replacement (2/d — 1)g? — D. Putting all this together, we have

I&s
NH
= e [ o

fdx 2(1—2x)(1—x)k2 g™ + (1—2x 2kHE ]< : 1+...>

812
=1 Lgin oty (5:76)
T 24nle ' 37

With this, we have
o2

2472

I (6) = (g k) =5 4o ) == D R, (577

and to keep the self-energy finite, we have the Z factor,

e? 1
2472 ¢

3.2.3 Corrections to the scalar propagator
At one loop, the scalar propagator receives the following corrections.

For one loop calculations in this theory, Lorenz gauge simplifies calculations greatly.
Photon propagator in the Lorenz gauge is

2 ()= (e = )= — (3:79)

12— ¢ /2 [2—ie
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Figure 3.7: One loop corrections to the scalar propagator in scalar electrodynamics.

Note that P#*(/)[, = 0. The diagrams above yield

| /1N [ dt PR+ 2k), (4 2k),
zH(kz):(”)z<2> f @r)t I +RP +M2)
oI [ df g P ()
+(—21e2)<_>J (2ﬂ)4m

1

4
+(—M)<%>J %m—i(zﬁnkti(zﬂﬁ DM2. (3.80)

The last integral above is the same as the one in pure ¢4 theory. For the second integral,
consider g, P* =g, (g — [#]Y]1%)=d —1, so that

dl g di
Ji ~a-n]

27) 124 m? Qr) 2+ m?

=@-n| K

Q2m)d 12+ m]

l""E
=—(d =1, (3-81)

which vanishes as m, — 0.

For the first integral, consider the numerator

; e
pr (l)(l+2k)#(l+2k)vz4<g“ e >/e#/ev
4

= SR — (k) (382)

so that

f d4l P“”(Z)(1+2k>y(l+2k)v_f d*l 4(1PR2—(1k)?)

Qr)t I2((L+k2+M?2) ] Qr)* 2L+ k)2 4+ M?) (3.83)

Writing the denominator as in integral over Feynman parameters, we have

1 1
P+ k7 +M2) J Bigrop (3:84)
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where g = [ + x3k and D = x5(1— x;)k? + x;M2. We also express the numerator in
terms of ¢,
N =1k*—(lk)
= (g kPR [(g — sk kT

= ¢’k —(qk)’
_ 212 _l)
=g’k <1 7) (3.85)

where we dropped terms linear in ¢ and used [d%q g#q* = g*’d—'4%. Since we are
only interested in the divergent term, set d = 4. We need the following integral over

9>
diq i 1
J(Zﬂ?d;?;+o<€o). (3.86)

Putting everything together, we have

212 2
)= (2 A iz -, (87)
872 872 )¢
so that , .
Z,=1 Setl and ZM:1—|-—1 (3.88)
2 € 872 ¢

3.2.4 Corrections to the scalar-scalar-photon vertex

The scalar-scalar-photon vertex receives corrections from the following diagrams at
one-loop level. External momenta cannot all be set to zero because the tree level vertex
factoriZ,e(k + &) . depends on the momentum of scalar lines. In particular, both
external scalars cannot have zero momentum. However, to simplify calculations as
much as possible, we have made a particular choice: outgoing scalar has momentum
k, while the momenta for the photon and the incoming scalar have both been set to
zero.

Figure 3.8: Corrections to the scalar-scalar-photon vertex in scalar electrodynamics.
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Writing out the contributions explicitly, we have

L /1N [ df QRHDFQEHIYP, (DI
iV =iZck? +(‘e>3<?> (m)* 12+ M)(L+ k)2 + M2)
o (INE (At 8P (D +2k)
+(_2‘ez)(”)(?> f @)t 11+ k)2 +M2)
' . 1\2 d4l glwpvpa)lp
+(—2l€2)(13)<_~> f(Zﬂ)“ 1212 + M2)

A

o SIN [ dY (21 + k)
iy | G mrma . O

We note that the first and third integrands are proportional to P, P(l )P =0, and
therefore vanish. In the last line, after converting the denominator to an integral over
Feynman parameters, we have

1
dx———, .
with ¢ = [ + xk and D = x(1—x)k? + M?. The numerator becomes
(2L +k)¥ =2q" + (1 —2x)k". (3.91)

First term vanishes after an integration over ¢, and the second term vanishes after
integration over x. Hence, the first, third and fourth diagrams vanish.

For the second diagram, consider the numerator
[T—
NE =P, (1)1 +2k),

v l"lp
=2g* <gvp— B kp

2
yE

(l%”—l“(l/e)). (3.92)

Lumping /=2 with the denominator and converting the it to an integral over Feynman
parameters, we will have ¢ = [ + x3k and D = x;(1 — x3)k? + x;M>. Rewriting the
numerator in terms of ¢, we have
N#=2(1%k* —1*(Ik))
=2[q%k* + x*k*RH — g (qk) — x*kHk?]

1
= 24> ”<1——>, .
gk y; (3.93)

where we dropped terms linear in g and made the replacement g,,9, = g Wd_lqz. As
we are interested only in the divergence, set d = 4. Finally, using

dq q* i1
J @ @2 4Dp 8w (394
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and putting everything together, we have

3ie’kH 1
iVF=iZ ekt — -, .
; ! o7 < (3.95)
so that ,
3ec 1
Zi=1+_—-. (3.96)
8l ¢

3.2.5 Corrections to the scalar-scalar-photon-photon vertex

The scalar-scalar-photon-photon vertex receives corrections from the following dia-
grams. As the tree level vertex factor —2ieg,,, does not depend on external momenta,
they have all been set to zero.

Figure 3.9: One loop corrections to the scalar-scalar-photon-photon vertex in scalar
electrodynamics.

For the first diagram, the corresponding integral is

(3.97)

1>3f dtl g"IPI7P, (1)
(

(_2ie2)(ie)2<; 2 1212 + M2)(12 + M?)

Note that the integrand is proportional to PPU(Z )I? =0, and therefore the diagram
vanishes. In particular, whenever there is an external scalar attaches to an internal
photon, the diagram must vanish because it would contain a term like P, (/)/#. By
this argument, the first three and last two diagrams would vanish.

Contributions from the remaining three diagrams give

1

v/ V:—2iZ4ezgyv+2(—i/1)(ie)2<2>3 f (d” (214)@2l)

2m)* (12 4+ M2)
o/ 1N [ d*l gMFP,,(1)g”
+2(—2162)2<—.> f(zﬂ_y a0

. oI\ [ dt 1
+(—iA)(—2ie )<;> g f(Zn)“ ST (3.98)
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We start with the integral in the first line. Numerator can be simplified by using the
symmetric integration identity, /#[¥ — g?d=1?,

d*l  4d—1]? i1
2 % _ 2 %
2l | i = () 6o

where the integral was done in the usual way, and we set d = 4, because we are only

interested in the divergent piece.

For the second integral, consider the numerator

4]y 1
()= oMY _ — o1~ )
Pl =g — == g(1- ) (3.100)

where we made the replacement /#/* — g#*d~!]? because the rest of the integrand is
only a function of /2. The integrand becomes

1 d*l 1 i1 3iet 1
8 4<1__> Wf 6e? HV<__+...>: w4
¢ 4)8 (2m)* 12(12 4+ M?) T8 sz & 4 e

(3.101)
For the final diagram, we have
202 g™ dl ! — 22 Ag Ll—i— (3.102)
g (2r)* (12 + M2)2 g 812 e ' >
Putting the three pieces together, we have
. uv . 2 w 3Ze4g’uv 1
iV ==2iZ,e"¢g" + ye I (3.103)
Absorbing the divergence in the Z factor, we have
3¢2 1
Z4:1+8_7-52: (3.104)

3.2.6  Corrections to the four scalar vertex

As before, the tree level vertex factor —i Z, A does not depend on external momenta, so
we set them all to zero. Diagrams in which an external scalar connects to an internal
photon by a three point vertex vanish for the same reason as before. Diagrams with
nonzero contribution are given below.

Top two diagrams with a photon loop have identical divergent part, and both have a
symmetry factor of 2. Similarly, the three diagrams below with a scalar loop have iden-
tical divergent parts and the third diagram has a symmetry factor of 2. We have

o 1,1\ . 22<1>2J d*l g P, (P, (1)gF’
Vig = lz*“<z+z>< 267) ) @ay (I2+m2y

+<1+1+%>(_M)2<21'>2 (j:y B +1M2)2' (3.105)
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Figure 3.10: One loop corrections to the four point scalar vertex in scalar electrody-
namics.

For the first integral, we use

g“P,(1)P,,(1)g? = P',Pf =P, =(d—1), (3.106)
and »
g 1 _ 1.
J(Zﬂ)d(qz—i—D)z_Sﬂ:zf—i_ ’ (3.107)
toget
1,1y .22<1>2f d'l g P,(DP(Dg" (d—1)ie*1 0
(5+3 J-2e(5 = O

(3.108)
Similarly, for the second integral, we have

1\, . 1\2 [ d*l 1 5:4% 1
(1+1+5>(_M)2<?> J(Zn)4 Ty teme O (109)

Setting d = 4 and putting everything together,

1+O(6°). (3.110)

€

et 5\
272 1672

To keep the vertex function finite, we have

(3.111)

3¢t 50 \1
+ =
220 1672 J €

z=1+(
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3.2.7 Beta functions
Comparing the renormalized Lagrangian in 4 — ¢ dimensions
1 v 1 ~NE
L=— Zza/quaysé - ZMMZQZST‘# - ZF# F,uv - ZZ/V{/U (¢T¢)Z
iZ,e i PA(B, 8NP PO, P) - iZ,Pa A AT S (3ar2)
and the Lagrangian with bare fields and parameters,
1 1
L=— 3”¢§9,,¢o _ngsg?ﬁo - ZFO# FOyv - 1/1(¢§¢o)2
+ ie“‘g[(@%)ﬁﬁo - ¢g(ay $o)]— iezAé‘Aoy ¢Z¢o, (3.113)

we have the relations

$0=2,"¢ (3.114)
My= Zl/zzz_l/zM (3.115)
Al =740 (3.116)
eO:Z Z_lz_l/zl&f/2 (3.117)

g = =7, 1Z 17,0 (3.118)
Ao=2; 27,0 (3.119)

We notice that Z, = Z2Z;" must hold. From our computations in the four previous

sections,
4 _1—|—§%1 (3.120)
Zzzl—i—%% (3.121)
Z3:1—2:;2% (3.122)
24:1+%§ (3.123)
ZA:1+<%+1222>% (3.124)
ZM:1+$§. (3.125)

If we define, E(a, €)= 1n<le Z;IZ;1/2> and L(a, €)= ln(Zz_ZZ/{), and notice that both

can be expressed as power series in 1/, the beta functions are given by

B.(e, A)—e<§§ /1;/1> (e, A) (3.126)
Bae =5 o442 ate, D) (5.127)

where £, and L are coefficients of 1/¢ in the power series for £ and L respectively.
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Notice that Z, = Z, to at least this order in e. Therefore, we have
o2

Py + O(e4)>% +0(e7?), (3.128)

E(e, )= ln(Z;l) =—InZ;= <

so that E; = ¢? /247> + O(e*). Beta function for scalar-photon coupling is

3

] ——+0(e). (3.129)

Pele, )=

Similarly, consider

3e“ 1
L(e,/l)_ln|:< +——> <1+ 37 16ﬂ2>6>]
:ln[1+< 54 +_362+ ¢ >1}
1672 4r 2127
54 —362
:<167t2 2n2A> (3.130)

50 —3¢2 3¢t
LieN)=—+5+5 33 (3.131)

so that

and the beta function

502 320 3et

A= — — —. .
B y= 20 24 0 G.132)
3.2.8 Anomalous dimensions
For anomalous dimension of the electromagnetic field, proceeding as before
1dInZ, e?
A . .
yale, A)= Yding a8 (3.133)

Similarly, for anomalous dimension of scalar field, we have

_1dlnZ, 3¢
yqs(e’/{)_zdln/u T 16n? (3.134)

Finally, for anomalous dimension of mass, we need

B(e,)=In(Z 1/222_1/2>=< e >1+O(6_2) (3.135)

1672 1672 ) ¢

and therefore

d d A 3e?
u(e A)_< de Aﬁ) (@)= 12 " Ten (3.136)
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CHAPTER 4

Nonabelian Gauge Theory

IN THE MINIMAL PRESCRIPTION of electrodynamics, matter is coupled to the gauge
field by requiring the Lagrangian to be manifestly invariant under a local gauge trans-
formation. Consider a set of N fields ¢;(x) in an N-dimensional representation R of
the gauge group. A local gauge transformation is given by

$,(x) — exp[—i gl ()T ] py(x), (4.1)

where g is a dimensionless constant, and 77 are generators of the group in its N-
dimensional representation R. Indices j, % which correspond to a representation of
the gauge group are called color indices.

A Lagrangian that is invariant under a global transformation of the gauge group can
be made to respect the local symmetry by replacing the ordinary derivative by a gauge

covariant derivative
— . a a
Dlu_é’y—ng#TR, (4.2)
where A (x) are a set of gauge fields, and color indices are supressed. A gauge invariant

Lagrangian for just the gauge field, also called a Yang-Mills Lagrangian is given by

1
Lym :—ZGWVG;V, (4-3)

where G, = 9, A} — J,Aj,, is the field strength tensor for the gauge field A% (x). With
G, = d A, — A, +gf ab CA‘LA‘% (where fb¢ are structure factors for the gauge
group), kinetic term for the gauge field can be expanded,

1 euvoe 1 ev e 1 ev e
_ZG p GW_—EQNA SMAV+§3”A A,
1
_gfabeAa,uAbvé)luAev_ZngabefcdeAﬂ#Ava;Ag. (4'4)

By doing an integration-by-parts on the first two terms and throwing away the surface
integral, we have

1 % _ 1 2 v
— GGl =+ A(8,07 = 3,Q)A°

1
. gfabeAaluAbvé)[uAev _ ZngabefcdeAﬂ#Ava;Ag. (45)
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To quantize the gauge field, we need to gauge-fix by adding ghosts
Ly =—3%e"D}ece
_ ~c c abc pa -b ¢
=—0Hc ¢ +gf*7 AN, (4.6)
and a gauge fixing term

1 — C AV gC 1 —1 gpc v
Lyg=—oE 1 OMAL O A = +-ETI AN, 34, (4.7)

where for the second equality we have done an integration-by-parts. Putting everything
together, we have a quantum variant of the Yang-Mills Lagrangian

1 e e 1, e ev ~a a
Lyy+ L+ Ly = A (84— 3,04 V+55 LAH3, 0,47 =3+,
1
abc gau Abv c 2 rabe rcde gau gbv gc 4d
—gfPCATA &’HAV—ng [ECATHA AHAV

+gfeteAsdrect, (4.8)

Calculations leading up to the calculation of the beta function in nonabelian gauge
theory with spinors has been adapted from SREDNICKI.

4.1 Coupled to spinors

As before coupling to spinors occurs by replacing the ordinary derivative with the
partial derivative.

Lfermion:i¢j¢i] ¢j1_m1¢§¢il> (49)
where [ is the flavour index. In quantum chromodynamics, the gauge group is SU(3)

and quarks are in its fundamental representation. As a result, each quark comes in
three colours. There are six flavours, and each flavour has a different mass.

Expanding out the kinetic term, we have

i‘%?;‘j%‘l:iszéasbil+gA‘;(TIg)ijSZ§VM¢jI’ (4.10)

where the index on 4 runs from 1 to D(A), the index on 7, runs from 1 to D(R)
and the index on 7 runs from 1 to 7;". In quantum chromodynamics, D(A) = 8,
D(R)=3and ny =6.

'D(R) is the dimension of the representation R of the gauge group, A stands for its adjoint represen-
tation, and 7 is the number of fermions in the theory
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Putting everything together and adding appropriate renormalizing Z factors for loop
calculations, we have

1 a ay 1 — a ay ~a a
L0:+§A (g, d*—3,d)A +5£ 'A% 3, 3,A™ — M4 ¢
+ididbii—Zpymididu (4.11)
v 1 v
Ll :_Z3ggfabcAayAb ayAf/ _Z 4gg2fabefcdeAayAb A;Ag
+ 2y g [ AL + 2y g AT Py s+ Lo (4.12)
1 a ay
Lct =+ §<Z3 - 1>A lu(gyvaz - 8/,13\/)

—(Zy —1)3"¢" 3¢ +i(Zy — Vir@bis— Lo —Omypiyis. (4.13)

4.1.1  Corrections to the gluon propagator

At one loop, the gluon propagator is corrected by the following five diagrams.

), I 4k
T

Figure 4.1: One loop corrections to the gluon propagator in spinor gauge theory.

The first diagram is proportional to f d*l/1%. However, this integral vanishes after
dimensional regularization.

fd“ll_)NEJ'a’dl 1 (orn)
Cry2 "M ) G 14
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where we have introduced an infrared cutoff m . for “gluon mass”.

dil 1 10 d\  _ai—dp)
7€ = I'f1—=
# f(Zn)d 124+m2  (47m)d/2 < 2>mg

8
im; e[ 4rni? /2
_ _r<—1 + —>
(47)? 2/\ m?

g
2
—imy /2 e [4ni?
_ g2 _ € K
1672 <e y+1><1+2ln< myg >>
—im? [ m?
8 8
—— [ Z41-In—-2), .
= <€ nﬂz> (4.15)

which vanishes as m ¢ 0.

For the second diagram, we have

i11%? (k)

v, gluon loop

, (4.16)

Z

:1<1>2f 41 808PV e~k — 1,1V (e, e+ 1)
2 (2m)* 12(] + k)2

where

yyabe _ abc
lvyvp(p’q’r)_gf [(q_r)ygvp-i_(r_p)vgplu+(p_q)pg,uv] (4-17)

is the factor associated with the three gluon vertex. We can expand the numera-
tor,

g7 PP iV ey—k — 1, 1)i Vel (—k, 1k +1)
= ngdefadC[(_k _ZZ)vgpa + (_k + l)pgva + (Zk + l)agvp]

[(—k—20),8%° +(2k+1)7 8L+ (—k+1)°8,] (4.18)
Colour factors simplify as
fhed pade — _(_j pbedy_; rade)
= (T T
=—Tr(T"7*)
=—T(4)8, (4.19)

and we write

g* g Pivicd(k,—k —1, l)iVZiiB(—/e,—l,/e +1)=—g’T(A)°N,,,  (4.20)

where

N[uv = [(_k _Zl)vgpa +(_k + l)logva +(2k + l)agvp]
X[(—k —21),8%¢ +(2k +1)7 85+ (—k +1)°85].  (4.21)
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We express the denominator as an integral over Feynman parameters,

1 1
(1 kP :f @D (4:22)

where g = [ + xk and D = x(1—x)k?, and write N, in terms of g,

N, =[2q+(1—2x)k), 8.5 + (=g + (1 +x)k),8,, +(—q —(2—x)k), g,,]

[(2g+(1—2x)k) g% +(—q —(2—x)k)" 8+ (—q +(1+x)k) 8]
=44,9,8,08" —24,9° 800811 —20,9° 8,081 — 24,4, 8,0 8" + 409° 85

+9,9° 8,001 — 24,9, 8,08" + 459" 8,085+ 459”850
+(1—=2x)"k,k,8,, 877 —(1—2x)2—x)k, k" g, 8%
+(1—2x)(1+x)kvleng03;+(1—2x)(1+x)/epkﬂg/°”gm
— (14 2)2— )k, k7 g, 80 + (14 x Pk kPg,, &
—(2—x)(1—2x)k0k#gvpgpa+(2—x)2/eg/e”gvp35
—(2—x)(1+x)/e0/e'°gvp3;j + terms linear in g (4.23)

gpa

=4dq,9,~24,4,~ 24,9, 24,9, + 4.9 + 4" 8oy — 24,9, + 4" 8 + 44y
+ (4% —4x + Ddk, k,— (2x* —5x + 2)kk, + (—2x*—x + Dk k,
+(—2x*—x+ Dk, k, — (—x?+x + 2k k, + (x*+2x + 1)/e2gw
—(2x*>—5x + 2)k,k, + (x*—4x + 4)/e2gw —(—x*+x+ 2)k %, (4.24)

_ 2 2

=(4d —6)q,9,+297g,, +((4d —6)x"—(4d — 6)x — (6 —d))k .k,
+(2x2—2x+5)/e2gw. (4.25)

To simplify, we dropped terms linear in g and used 88" = d. Moreover, we can

make the replacements g,,q, — d~ 1gwq and ¢> — (Z/d 1)7'D with D = x(1—x)k?,
such that

_ 2 2 2 2
N, =10q,q,+2q°g,, +(2x"—2x +5)k°g,, +(10x" — 10x —2)k &,
9
— qugw +(2x* —2x +5)k?g,, + (10x* —10x —2)k  ,
— (11x* = 11x +5)k?g,,, + (10x* — 10x —2)k k. (4.26)
Aswe are only interested in the divergent part of the integral, we put d = 4 throughout.
Putting everything together, we have

1 ~
r1ab _ 2 ab
lnfuv’ gluon lOOp(k) - Eg T 8 f de f 2 _|_D

_1, ﬂb<_ 2 >< >
=58 T4 kg — =

ig? T(A)S“b<%kzgm /e b >< > (4.27)

1672
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For the third diagram, we have

20 g4 iV 4R, V(L + k)
y1ab — _1 <1> J o 12 )
L ,uv,ghostloop(k) (=1 ; (27)* 12(1+k)2 ’ (4.28)
where
Ve (q,r) =g q,, (4.29)

is the factor associated with the ghost-gluon-ghost vertex. We expand the numera-
tor,
iV (L4 R, DIV (L L+ k)= g2 f“C P41+ k) 1, (4.30)

Simplify the colour factor by
facdfbdc — —(—l'f’“d)(—ifbdc)

=—(T) (T} )"
=—TrT¢T}
=—T(A)3, (4.31)
so that
iVEL(L+k, DiVE(L 1+ k) =—g>T(A)8’N,,, (4.32)

where N, = (I +k),,/,. Write the denominator as an integral over Feynman parame-
ters,

1 1
mrve =] o )

where g = [ + xk and D = x(1— x)k?, and write the numerator in terms of g,
N,, =q,9,—x(1—x)k, k,+ terms linear in . (4.34)

Make replacements g,,9, — d='q? 8uv> g* — (2/d —1)7'D and drop terms linear in ¢
to get

1
N,y = =5 x(1 =)k g, —x(1 =)k, k.. (4-35)

Putting everything together,

dq i

-r1ab .2 ab
lnyv, ghost loop(k) =8 T<A)8 f de#Vf (27-[)01 (qZ +D)
|

1 1
:_gZT(A)é\ab<_Ek2gw_ gkﬂkv><__ _|_>

82 e

g2 1 1 1
_ iT(A)é‘”’(Ekzgw-i—gkﬂkv><;+--->. (4.36)

82
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For the fourth diagram, we have

i (k)

wv, fermion loop

/1Y o [ dt TS —E+m)y (S +m)
:(_1)(‘g)2<2> Tr(TffTR)J 27y <(12+m2)((1+k;+m2) >'

Other than the colour factor Tr< T]f Tlg) = T(R)84?, the expression is identical to the
similar electrodynamics diagram. Moreover, if the theory has 7 families of fermions,

then each of the fermions will contribute with a loop. Each of these contributions
will be identical. As a result, we have

A4 (k)=

wv, termion loop

. 2 1
iT(R)anﬂb<l€2g[uv_lefukv><_-i_"'>' (437)

672 €

Counterterm contribution to the gluon propagator is

Hdb _(ZS_l)(kzgluv_k/ukv)é\ﬂb = é\ﬂb(lezgfuv_le[ukv)l_lct(/ez) (438)

uy, ct =

Summing all the contributions, we have

T (k= Lo s (21— o TR B2 — k) L 4
v, loops ) 3 3 F 8uv AP
= Sab(kzg,uv _/e,ukv)nloops(kz) (439)
and finally,
H(kz) = Hloops(kz) + Hct(kz)
/5 4 g’ 1
= <3 T(A) 37 T(R)> = (Zy—1). (4-40)
For I1(k?) to be finite, we must have
5 4 21
Z =1+ <3T(A)— 2y T(R))Sg—z— +0(gh. (4.41)
e

4.1.2 Corrections to the fermion propagator

At one loop, the fermion receives corrections from the following diagrams.

/
TN
} Pé %P . } p p )
J z ] X —
p+1

Figure 4.2: One loop corrections to the fermion propagator in spinor gauge theory.
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For the first diagram, we have

. iy 1N d*l y'(—]—p+m)y,
=27 ) TRT0 | G i e (440

Other than the colour factor (7°7),; = C(R)J;,

the expression is identical to the
similar electrodynamics diagram,

. 1g- 1
Sl ) =—~CR, (f+4m) S L (4-43)

With the counterterm, we have

2
1
S(F) = ~Z=1p8;;—(Z, = hmd;; —CRS, (f+4m)Es = (4.44)
Absorbing divergences in the Z factors, we have
g’ 1 g’ 1 4
Z,=1—C(R)=>-=~+4+0(g" and Z,=1—CR)=>=-+0(g".  (4.453)
2 e 2n2 €

Each family of fermions will receive an identical contribution to the divergent part of
the Z factors.

4.1.3 Corrections to the vertex

Atone loop, the fermion-fermion-gluon vertex receives corrections from the following
diagrams.

Figure 4.3: One loop contribution to the spinor-spinor-gluon vertex in spinor gauge
theory.

For the first diagram, we have

_ y d* Ly (S +myyH () +m)y,
lv”yl ¢ g)< >(TbTRTR) )t 12(124 m2)(12 4+ m?) (4:46)
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As the divergent part of the diagram is independent of the external momenta, we have
set p; = p, =k =0. Apart from the colour factor,

TRTR TR = (T3 TR1+ TR TR TR
= if TR + TR(TR TR)
1 ; ac Cc a
= Sif [T TR 1+ CR)T

1 ac rc a
=—fP T+ CRIT
1

== (S f )N f T+ CRT

_ _% Te(T{T4) T8 + CR)T
_ —%T(A)S“d T¢ + C(R)T®
1
=(cw-5Tw)Ts, (4.47)

the diagram is identical to the similar diagram in electrodynamics, and we have

- 1 Ligi
zVi]’.f1:<C(R)—§T(A)>y“( e
L T G E (449)
— P8R 2 872 ¢ +4
For the second diagram, we have
1\’ d*1 iV~ Dy () +m)y
AR o2 bey v P
t ij,z—(zg) <l> (Tx TR)z]J Q2r) 1212(12 4+ m?) o (449)

where

iV“bCf‘Vp(p,q, r)= gf“l”[(q— g +(r—p) gt +(p _Q)pg/n]' (4.50)
Again, as we are only interested in the diverging part of the integral, we have set
P, = p, =k =0. Expanding the numerator, we have

(TR TR); iV (ky—L, Dy, (] + m)y,
QTR f 2 (=211 P +(I—kY gP + (L + k)Y g Ty (—] + m)y,
= g(TR Tg)i; f**N*. (4.51)
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The colour factor is simplifies as

aoc c 1 aoc c
fT T = S [T TR

1.

— zlfabcfbce T]s

1 ; s faovc s fec e
= =i [P =if )T
1 . a e e
= 51 Tr(TA TA)TR

= %iT(A)TI‘;. (4.52)

To simplify N# we only keep terms quadratic in /, because we are interested only in
the diverging part of the integral,

N =[=214g" +(I—k)'gP* + (L + k) g T (—/+m)y,
=2ty = ="
— 2(d—2)1#] + 21
2(d—2
. (d Jj2,m 422y, (4-53)

where we used y,dy" =(d —2)dand [ [, — d_llzgw. Since we are interested only in
the divergent part of the integral, we put d =4 and

NH = 3[2H, (4-54)

Putting everything together, we have

v ——2(i)3<1>3TQ4X7W)“ uJa d'l 2
2= 8\ RIEGT ) 2y 1212(12 + m2)
_3. ay. #(Ll >
- Zg T(A)(TR)Z]}/ 872 ¢ +
. . 3g% /1
:lg}/“(TR)i/T(A)l()g?Tz(;+"'>- (455)

Finally,
Vi =iZgy*(Tp); +iVie | +iVie,
=igrrp), (4 + e+ TS (4:56)
and absorbing the divergence in Z, gives
2, =1-[CR)+ TS+ 0(g") (4:57)



4.1.4 Beta function

Relations between bare and renormalized parameters and fields for nonabelian gauge
theory is the same as in electrodynamics. In particular,

mozzz_lzmm, (458)
&= 2;1/222_1218- (4-59)

If we define @ = g2 /4m, then
@y = Z;lzz—zzfa. (4.60)

Let G(a,¢) = ln(Z;lzz_ZZf), then G can be expressed as a power series in 1/,

G, (a
G(a,e):z Zi ) (4.61)
n=1
By the analysis of the previous section,
d
©=—ca+B(a) (4.62)
dlnu
where
Bla)=a’Gi(a). (4.63)
We have calculated the Z factors to one-loop,
1
2, =1-[CR)+T(A)]3- - +0() (4.64)
1
Z,=1—C(R)—=~ + 0(?) (4.65)
2 e
Z =1— C(R)z—"‘1 +0(a?) (4.66)
€
5 4 1
Z =1+ <—T(A) i, T(R))i- +0(2). (4.67)
3 3 2 e

Using the values of Z factors above,
G(a,e)= an;leZZIZ
5 4 o a a
:ln<1—[3T(A)—gnFT(R)]E><1 +CRZN(1-[CR+ T)Z)

_ <—[§T(A)— ;anT(R)}% + C(R)%—C(R)%— T(A)%)é T n
=[S+t o (4.68)

so that " . y
Gi(@) =[S T+ 5 TR |2 + 0@, (4.69)
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and the beta function,

or equivalently,

4.1.5 Anomalous dimension of mass

Anomalous dimension of mass is defined as

dlnm

ym(a) = dln[u *

By the analysis of previous section, if A(a,¢)=InZ;'Z,, then

and the anomalous dimension is given by,

V(@)= adi(a).

With Z factors as above, we have
A(a,e):anz_lzm
:ln<1 + C(R)i1><1—C(R)2—“1>
27 €

T €
@i
2 €

so that

3a )

Ay(a) =—C(R)7— + O(a"),

27
and

3a

(@) =—C(R)IZZ +0(e?)

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)



4.1.6  Anomalous dimension of fields

Anomalous dimension of the field is defined as

1dInZ,

ryle :Edln,u
_19InZ, da
"2 da dlnp

= 12 (~CR D eat f)

T 20a 2 €
= C(R)Z + O(a?).
4

Similarly for the gauge field, we have

_1dInZ,
yA(a)_Edlny
_1JdInZ; da
2 Jda dlny
10 5 4 a1
_ E%<[5T(A)_ gnFT(R)}E;>(—6a+,3(a))
I PN LS 2
_ [3T(A) 3nFT(R)L7T+O(a )

4.2 Coupled to scalars

(4.78)

(4.79)

As before, we start with a manifestly gauge covariant Lagrangian for complex scalar

fields in a representation R of the gauge group,

Lt =—(DF$)I (D, ), ~M*$ 8, — 815, 811 .

We have (DF )17 = LTl +1i gngTkA‘L(TI‘g)/"]., and therefore

(D“$)VD,, ¢,

(4.80)

=—igAs| (A" PTNTR) Fp— 7 (TR) (¥ ) |+ A+ AL $THTRTY) 6.
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After expanding the kinetic term for gauge fields, adding a gauge fixing term, ghosts,
inserting appropriate Z factors and organizing the Lagrangian as before, we have

[P w et av ~a9 .a
Ly=+34 “(8,,9*—3,d)A +§§ 'A% 3, 3,A™ — K4, ¢
—3”95”9#%—}‘42&’95/ (4.81)
L :—Z ahcAa,uAbva AeY _ — 2 rabe cdeAa,uAvacAd
=2y g

+Zy f”’bCA“&’f‘cbcC+ngA”[3”¢“ NI — (T F(2 By

2, AL (TATE) b — 2087 8,87 by + L (4.82)
1 _
L=+ (2= DA(g, — G, Q)A" — (Zy —1)3e" g, c*
(Zy—1)2#¢Y13, ¢, —(Zy—)M*$" §, (4.83)

so that the complete Lagrangian, L = Ly + L.

4.2.1  Corrections to the gluon propagator

We have the following diagrams correcting the gluon propagator in scalar nonabelian

gauge theory.

Figure 4.4: One loop corrections to the gluon propagator in scalar gauge theory.

The third, fourth and fifth diagrams are evaluated exactly as with spinor fields. Third
diagram gives

s ig? {19 11 1

i ()= 2T (T = kb ) 4] (484)

v, gluon loop = 16772 3 €

the fourth diagram vanishes, and the fifth diagram gives

ra zg P 1
ZH/zI\?/, ghostloop(k) 8772 T( )8 b( kZ [uv6/€[uk ><;+> (485)
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Adding up the two contributions,

, 51921
4T 18

yTab a _ ( ) -
v, ghostloop — 2472 ¢

111 luon |
/JV, gUOD OOP

3 (k?g,, —k,k,) (4.86)

For the first two diagrams, we have

L e (N [ Y QLRI RY
ZH[uv, scalar loop _(Zg) Tr<TR TR >< l> J (27‘{,’)4 (12 +M2)((Z _|_k)2 +M2)

4
+(—ig2)2Tr(T£T]5><%>J %ZZ-I—;W (4.87)

Other than a color factor of Tr( T3 T}? ) = T(R)8?, the integrals are identical to similar
ones in scalar electrodynamics. Therefore

o2
2164 — rg 1 abip2 _uv v
ZH/uv, scalarloop__T(R)24n2;é\ (k"g —k“k"). (4.88)

We notice that H‘L{’, = TI(k?)84 (k2 8.y — k,k,). Putting everything together, we
have

H(kz)l loop = H(kz)loop + H(kz)ct

5 1 g2 1 0
=213 |-z - n+0@). (aso)
TT“ €
To cancel the divergence
z, = 1+[5T(A)—1T(R)]g—21 (4.90)
T3 3 8l +9

4.2.2  Corrections to the scalar propagator

At one loop, the following diagrams contribute to the scalar propagator.

/ [
//<\\ l
e P TR @ k k
S (A ——»——l—>—/€— e R O G S
+

Figure 4.5: One loop corrections to the scalar propagator in scalar gauge theory.
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The first diagram is exactly the same as for scalar electrodynamics (and pure phi*-
theory). Integrals for the second and third diagrams are

iT(k?)) =8/ (--)

N[ df (L 2k)EP (1) 2k)
+(TRTR)i](lg)2<;> J(Zn)“ 12((l+2)2+M2) (4.91)

e is o af I\ [ 8P (1)
+2(TRTR)i](—182)<;>f 2y ;2+m§ (4.92)
—i(Z,— VB2 —i(Zy — 1)M? (4-93)

Other than a color factor, the integrals are same as the ones encountered in scalar
electrodynamics. The third integral vanishes in the m ;=0 limit. Simplifying the

color factor (773 Tl‘g)ij =C(R)S lj , and using previous results, we have

(B DR =2y =DM (494)

(k%) = <C(R)3 gk | AM 2)

872 872
so that to keep II(k?) finite, we must have

3g7 1 Al
22:1+C(R)i2— and Z,=1+-—-. (4.95)

2 e 82 e

4.2.3 Corrections to the scalar-scalar-gluon vertex

At one loop, we have the following corrections.

‘\ ‘\ l
\ \kl \I \

[T }j»&mmf liz@w
5 Itk Sk

¥ ¥

Sk Sk

’

Figure 4.6: One loop corrections to the scalar-scalar-gluon vertex in scalar gauge

theory.

The first, fourth, fifth and sixth diagrams will be proportional to their counterparts
in scalar electrodynamics. Hence, the first, fourth and sixth diagrams vanish. In the
second diagram there is a vertex in which an external scalar with zero momentum is
connected to an internal gluon with momentum /. This would lead to a factor of
1g1”P, (1), and the corresponding integral vanishes.
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For the third diagram, the three gluon vertex will give a factor of £#4¢ and the gluon
scalar-scalar-gluon-gluon vertex will give the color factor (73 T]f + T3 Tlé’ ). We note
that f abe jg antisymmetric in indices 4, & while T3 TRb + T} Té’ is symmetric, hence
this diagram will vanish as well.

Finally, consider the fifth diagram. Applying Feynman rules to this diagram gives

cignioriaTi+ () [ it (s
Other than the color factor,
TR(TRTR + TR TR = TR TRTR + TR TR T}
_ [C(R)— %T(A)]T;g +C(R)TS
= cw— T3, (4.97)

the integral is otherwise identical to the one encountered in scalar electrodynamics.
Therefore, we have

3igikt 1

e~ 74 . a 1 a
iV =iZ,g Tkt — | CR)— ;T T35 02, (4:98)
and therefore
1 3g21
z =1+ c®— T2 (4:99)
2 e
4.2.4 Betafunction
For reference, the Z factors for snonabelian gauge theory are
3 2
Z =14 [C(R)— lT(A)}il (4.100)
4 82 €
3 2
22:1-|-C(R)il (4.101)
2 €
5 1 g2 1
Z:=14+|=-TA)—=-T(R) |=>—- .
=14 2T - TR | £ (4102)
A1
ZM:1+8—7T2;. (4.103)
(4.104)
As in scalar electrodynamics, the beta function is given by
g d d
=gl 2=—+ 1= |G(g,A), .
Blo)= g5 +157)6i(e. ) (4.105)

where G(g,4) = ln(Z; !/ 222_ 121), and G, is the coefficient of 1/¢ when it is written

as a power series in 1.
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Computing G we have

In(z;"2;12,) = —% InZ,—1nZ,+InZ,

5

_ <——T(A) + %T(R)—BC(R) +3C(R)— %T(A))

6

1

_ —<13—9T(A)—5T(R)>

2
g 1 -2
-4+ o ,
1672 ¢ ()

and therefore the beta function

4.2.5 Anomalous dimensions

For anomalous dimension of the gauge field, we proceed as before

. 1dlnZ, _ g2
T2 dlnu _[T(R)_ST(A)]487'52'

}/A<g7/1)

And similarly, the anomalous dimension of scalar field

_1d1nZz_ C(R 3g?

_Zdln,u 1672

7/¢(g>’1)

Finally, for the anomalous dimension of mass, we need

B(g, ) =1n(2,/2,"%) = <L—C(R)3—g2>1 +0(e7?)

1672 1672 ) €
and d a A 392
(82 ., - __ g

(4.107)

(4.108)

(4.109)

(4.110)

(4.111)



CHAPTER 5

Summary

All the results derived in preceeding chapters are repeated here once again for refer-

€nce.

Scalar field renormalization

¢’ theoryind =6,

¢* theoryind =4,
Yukawa theory,

Scalar electrodynamics,

Scalar gauge theory,

1
Z, =1———__Z
¢ 38470 ¢
Zy=1+0(X)
2
g1
Z, =1—=>_Z
¢ 472 €
3e2 1
Z, =1+ =
2 e
3021
Z,=1+C(R)=5-~
872 ¢

Anomalous dimension of scalar field

é° theory in d =6,

¢* theoryind =4,
Yukawa theory,

Scalar electrodynamics,

Scalar gauge theory,

%2

¢~ 38473
v =O0)

2

&

"¢ = gn2

3e?
"¢ = "3m2

3e?

Yo = —C(R)ﬁ
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Scalar mass renormalization

3 theoryind = 6 z7,=1— 1
€0 =6, - 1—-——
Y M 64713 ¢
¢* theoryind =4 Zy = +L1
’ M 1672 €
A x? 3g2m?\1
Yukawa theory, Z,=1+ + — -
Y M <167r2 16m2M2 272M2 ) €
A1
Scalar electrodynamics,  Z;,; =1+ —-
872 ¢
A1
Scalar gauge theory, Zy=14—-
872 ¢

Anomalous dimension of scalar mass

¢° theoryind =6 5
eo =6, e —
y M 7680
A
4 th ind = 4, = —
¢* theory in =553
A x 6m?\ g?
Yukawa theory, =50 0t <1 a W)@
A 3e?
Scalar electrod ics, = ——
calar electrodynamics T 3 T 5
Scalar gauge theor _ A C(R) e
28 y T 8722
Spinor field renormalization
Yukawa theor Z,=1— g’ 1
y v 1672 €
e? 1
Spinor electrodynamics, Z,=1——-
872 ¢
g’ 1
Spinor gauge theory, Z,=1—C(R)=>—-
872 ¢

Anomalous dimension of spinor field

2

Yukawa theory, Y4 =352
T
2
Spinor electrodynamics,  y, = %
T
2
Spinor gauge theory, Yy =C (R)%
7T
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Spinor mass renormalization

g’ 1
Yuk theory, Z =14=—=
ukawa theory. m + 82 ¢
Spinor electrodynamics, Z_ = e’ 1
p y > m = 27T2 €
gh1
Spi th A Z =1—C(R)=>—-
pinor gauge theory. m ( )an -

Anomalous dimension of spinor mass

2

8
Yuk heory, =+
ukawa theory. Yo =+ =
. . 3e?
Spinor electrodynamics,  y,, =——
872
Spi th (R)2E i
inor gauge theory, =— =
pinor gaug Y: Ym P
Gauge field renormalization
. . e? 1
Spinor electrodynamics, Z;=1—-—-
672 €
e? 1
Scalar electrodynamics,  Z;=1— -
2472 €
Spinor gauge theor Z,= 1+<§T(A)—1T(R)>g—21
P &g > T 3 3 872 €
Scalar gauge theor Z;=1+ <5 T(A)— ! T(R)> g* 1
§aige Theoty PTIT3 30 )82
Anomalous dimension of gauge field
o2
Spinor electrodynamics, y,=-—
672
Scalar electrodynami ¢
calar electrodynamics, v = o—
Spinor gauge theor = —< > T(A)— 4 T(R)> g’
pinor gaug ¥ A==\3 3 =
2
Scalar gauge theory, ya=—0T(A)—T(R) £
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Coupling renormalization

¢° theoryind =6 Z =1 x 1
€0 =0, gl [P
Y * 64713 €
34 1
4 .
theory in d =4, Z,=14+—-"_Z
i ¢ A 1672 ¢
g’ 1
Yukawa interaction, 7 =14+
g 872 ¢

3
¢’ coupling in Yukawa theory, 7 = 1+< 34 _ 3mg >1

3 4
¢* coupling in Yukawa theory, Z)=1+ < 34 i>1

162 72A /e
. . e? 1
Spinor electrodynamics, Zi=1———~
872 €
. 3e? 1
Scalar electrodynamics, Zi=1+—~-
872 €
2
1
Spinor gauge theory, Z,=1—(C(R)+ T(A))%_
e
1 3g21
Scalar gauge theory, Z, =1+ <C(R) —- T(A))— -
4 872 €
Beta functions
¢’ theoryind =6, B, (x)=— 3%
* 25673
4 : 342
¢* theoryin d =4, B(A)=
1672
Yukawa interaction B ( A) 5’
W ) 5 X, =
s\8 1672
3g’x 3mg’ 3
¢’ coupling in Yukawa theory, B.,(g,%,A)= §x_2me xA
872 72 1672

32 g?A 3gf

¢* coupling in Yukawa theory, Bi(g,x,A) = 1672 " 22 2

3

Spinor electrodynamics, Ble)=
1272
3
Scalar electrodynamics, Ble, )= ¢
4872
Spinor gauge theor B(g)= —<ET(A) — iT(R)> g’
pinergang ’ 8773 3 1672

3
Scalar gauge theory, B(g,A)= —<13—9 TA)— %T<R)> 16g >
7
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CHAPTERG6

Spinor Helicity Formalism

AFTER INTRODUCING SPINOR HELICITY VARIABLES as linearly independent solu-
tions to the massless Dirac equation, we express things like momentum conservation,
Fierz and Schouten identities, and polarization vectors in this new language. To
demonstrate the power of this new formalism, Feynman rules for QED are written
in terms of twistor variables and scattering amplitude for Compton scattering is
computed using these new tools.

The free Dirac equation,

has plane wave solutions of the form
909 =3 [ T, p)e™ +dl(pros (] (62)
s==+

where 21; =d’p/(2r)’2E » is the Lorentz invariant momentum measure and bi( P)s

di( p)and b, (p), d.(p)are fermionic creation and annihilation operators respectively
that take care of the Grassmann nature of ¢(x). The four component spinors #, (p)
and v, (p) are commuting and solve

(f+m)u(p)=0 and (—f+m)v,(p)=0. (6.3)

Due to the group theory relation
2,1)®(1,2)®(2,2)=(L,)&(3,1)®(1,3)®(3,3), (6.4)

for representations of the Lorentz group, there is an invariant symbol ofﬂ. which
provides a dictionary between vector fields A, (x) and fields carrying one undotted
and one dotted index A _;(x),

A(x) =0l A, (). (6:5)

A consistent choice for the invariant symbols is o = (1,0") and 6# = (I,—0"), where
o' fori =1,2,3 are Pauli matrices.

2 we can define momentum

For a given four-momentum p# = (E, p*) with p2 =—m
bispinors

Pai = o—a[ua'p,u and pdﬂ = 0__/Mﬂplua (66)

79



8o

which can be thought of 2 x 2 matrices
04 p3 pl—ip? o .3 1, :.2
S AR A ja _ | P —p —p tip
Pai = (p1+ip2 —po—p3) and p*= (—pl—ipz —p°+p3) . (6.7)

The determinant is

det p =—ptp,=m?. (6.8)

Moreover, with the convention for gamma-matrices, we have

t= (pgﬂ pg‘i) : (6.9)

6.1 Spinor helicity variables

In the extreme relativistic limit, when Mandelstam variables are much larger than
fermion mass, we take 7 — 0. For massless fermions, the four-component spinors

satisfy
pvp)=0 and i(p)f=0, (6.10)
and the index s = £ indicates the helicity 5 =5 /2. Let
o= (Pk] . ein= 5] (611)
and
)= (1pl ), wp= (0 (sl:) (6.12)

solve the massless Dirac equation. The angle and square spinors are two-component
commuting spinors that satisfy the massless Weyl equation,

Ppl=0,  pulp) =0 [plpu=0 (pl,p“=0.  (613)

These two-component commuting spinors are also sometimes called zwistors. For real
valued momenta, the Dirac equation has only two independent solutions and the
angle and square spinors are related by

(Lel?y =1p)* and ({pl.)" =1p. (6.14)
so that we have v (p) = u_ (p).

Using the spin-sum completeness relation for massless spinors, we have
—p=>_u,(p)is(p)=|p) [Pl +1p1(pl. (6.15)
s==%
On matching undotted and dotted indices with the matrix form of # above,

Pai =—pL(Plis P =—Ip)*[pI" (6.16)
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In explicit terms, for a (lightlike) momentum of the form

pH= (E Esinfcos¢ Esin0sing Ecos@), (6.17)
we have
b= —p°+p’ pl—ip? _F —1+cos@ e P sinf
aa pl+ip? —p°—p° e'?sind —1—cosb
—92F —sinzg e—iP singcosg (6.18)
B e'? singcosg —coszg ' ’
Similarly,
it __op cos? g e % sin g cosg (6.19)
= ei¢sin§cos§ sinzg ' '

Both p,, and p#* are matrices of rank 1 and as solutions of the massless Weyl equations,
we have

.0 %
|p]=«/ﬁ( e), |p>:¢ﬁ( C‘”%] (6.20)

—e'Pcos? idgin2
e'? cos 5 e'?sin 5

and
(P|:\/ﬁ(sin§ —e_i¢cos§) 3 [p|=\/ﬁ(cos§ e_i¢sin§). (6.21)

The factor of v/2E is arbitrary, but has been chosen so that the relations p,; = [p](p]
and p® =|p)[p| hold.

We can define spinor brackets by contracting indices appropriately,

(pa)=(plila)*, [pal=I[pllql,. (6.22)

There are no mixed brackets becaues spinor indices cannot be contracted to give a
Lorentz scalar. Due to spinor indices, these brackets are antisymmetric

(pa)=—(qp), [pal=—lapr] (6.23)

For real valued momenta we also have [p ¢]* = (g p).

We also have the following relation

(ra)lral=—(pra)lar]
=(pl, qdb|P]b
:—Pba’qdb
=—p,a,(ol.0)
=—p.9,(—2g")
=2p-q (6.24)
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In terms of these new spinor helicity variables, momentum conservation can be written
by noting (for a process with 7 external particles),

D Fi==2 (il +1i) i) =0. (6.25)

i

On matching spinor indices, we have
> li1(il=0 and > li)[i|=0. (6.26)
Dotting with some spinors, we also have

> [kil(il)=0 and Z(ki)[il]:o. (6.27)

1

In particular, for a four particle process, we have
[TC1+ 2] (21 + 31 (3] + [4] (4] = 0. (6.28)
Dotting with [1] and |2), we get
[13](32) +[14](42) =0, (6.29)

and other similar identities. Usil’lg (p+ q)z = (p q)[p q], we also have identities
like,

(12>[12]:(P1+P2)2:(P3+P4)2: (34)[34]. (6.30)

These identities will be used extensively to simplify expressions for amplitudes in terms
of twistor brackets later.

6.1.1 Fierz and Schouten identities

We also have the Fierz identities, which are usually written in terms of four component
spinors #,(p) and v (p), in terms of twistor variables

(plrlaly, = (pl: 7 1q1y(0 g+ 00)
= (pl, 50, g+ (pl 5 o q],
=—2(pl; 8482191, —2(pl; " Iq],
=—2lq] (pl;—21p) [al*, (6.31)
and therefore,
> (ply¥laly, =lal(pl+ 1) lal. (632)
Similarly,
Lol lay, = 1) Lo+ 19 gl (633)
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In an alternate form,

(Ply*lq)(rlyls1=2(p r)lgs], (6.34)
[ply*la) (rlyuls1=2[ps)q ), (6.35)
[ply“la) [rly.ls) =2[p r]{gs). (6.36)

If we note that the twistors are elements of a complex two dimensional vector space,
any three twistors |),|7), |k) are going to be linarly dependent,

k) =ali)+&17)- (6.37)

Dotting once by (| and once by (j|, we can solve fora = (j k) /(j i) and b = (i k) /(i )
so that

|2) (7 &) +17) (R 2) + |R) (1 ) = 0. (6.38)
Dotting by an angle twistor (/|, we get the Schouten identity,
(Li)(j k) + (1) (ki) +(LR) (i) =0. (6.39)

Similarly for square twistors,

(L]l k]+ 170k ]+ 1k ]=0. (6.40)

6.1.2 Polarization vectors

Finally, we have the polarization vectors,

H(p3q)= (ply*lq] “(piq) = laly¥lp] (6.41)

V2(gp)’

lgp) HPVT

where g is alightlike reference momentum. We can verify these expressions for a specific
value of p, and then say that the general case follows due to Lorentz transformation
properties of twistors and polarization vectors.

Choose a frame in which p =(E,0,0, E). The most general form of the polarization
vector for this momentum is
el?

€+<P): E(O,l,—i,O)—l-Cp, (6.42)

where ¢'? is an arbitrary phase factor and C is a complex number. The freedom to
add a multiple of p comes due to the fact that p? = 0. Using the explicit form of
twistors,

ph=VIE 3] p1=VEE [§]. and = (5], e

Il
—
Y
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where a, 3 are complex numbers. Proper contraction of spinor indices, (] y*|p]=
{gl;o#“|p],, gives

‘ __(61|5|P]: — 1 = —a
(p=—12 <m - = m) (6.44)

50 that the relation holds with ¢’¢ = 1 and C = —3/+/2aE. This identity can be
verified for the negative helicity polarization vector by using ef =" and taking a

complex conjugate.

6.2 Compton scattering with twistor variables

With these tools we are ready to compute some scattering amplitudes. Consider
(massless) spinor electrodynamics,

L:i&ﬂgﬁ—%F“"Fw+eg&¢(¢. (6.45)

In terms of twistors, we have the following Feynman rules.

— Outgoing fermion with » =+1/2: [p|
— Outgoing fermion with b =—1/2: (p|
— Outgoing antifermion with h = +1/2: |p]
— Outgoing antifermion with h =—1/2: | p)
— Outgoing photon with » = +: €} (p)
Due to crossing symmetry, we can treat an incoming fermion (antifermion) with he-

licity 4 as an outgoing antifermion (fermion) with helicity —4. Similarly, an incoming
photon with helicity /# can be treated as an outgoing photon with helicity —h.

In spinor electrodynamics, the polarization vector is always contracted with y-matrices.
We have the following useful forms,

V2 SN
f-piy= o) lal+lalloD. - £lpsa)= o (lpMal 1) Pl (6.46)

which are obtained by an application of the Fierz identities.

In ey — ey scattering, the following diagrams contribute

We will compute the above process for specific helicity assignments. There are a total
of 16 different helicity assignments, but only 8 of these are independent; the other 8
are obtained by flipping all helicities.
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Consider a process in which electrons have the opposite helicity. For example,

3|/2 ﬁ1+[54)f/4|1]+l€2[3|/4(_ﬁ1_#2)/2|1]

(p1— ps)? (p1+ p2)? (6.43)

AleTy—ety)=

But note that an odd number of gamma-matrices are sandwiched between spinors of
the same type. Such spinor products vanish (because indices cannot be contracted
to form a Lorentz scalar). Hence, processes with different initial and final electron
helicities are forbidden.

Consider a process in which photons have the opposite helicity,

AleTy —eyh)= 3|/2+ ﬁ1+1§4/4+|1 . 2 Bl (21— $)f 1]
(Pr— 14 (P14 p2)?

(6.49)

Numerator of the first term is proportional to (3 ¢,) which can be made to vanish by
choosing g, = p;. Likewise, numerator of the second term is proportional to (3 ¢,),
and can be made to vanish by choosing g, = p;. Hence, processes with difterent initial
and final photon helicities are also forbidden.

The only remaining amplitudes are A(e"y~ — e~y ™), A(e”y+ — e~ y™") and their
crossing related cousins A(eTy™ — eTyT)and A(e Ty~ — ety ™).

We start with
Ay =)
o BRNANET B+ IRl 21
T A ) €
Choosing g, = p; and g, = p;, the first term vanishes and we have,
e BN s [12F
AleTy™ = ey ) =i(V2e) [14](12) =i(V2e) 4437 (6.51)

And its crossing related cousin,

AleTyt = ety =i(v2e)? <1<:>2<Z 3 (6.52)

Proceeding similarly,

Ayt —ey™)
o GBI 41 | G021
(2)< [, 2] 19[4 1](g 4 *X%>[]u»mzﬁ (6:53)

Choosing g, = p; and g, = p;, the second term vanishes and we have,

_ o (23)[14] _ . [14]
Ayt —e }/+)_z(1/§e)2[12]<14> _l(ﬁe)2[12][23]' (6.54)
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And its crossing related cousin,

_ . (14)?
ATy~ —ety )—l(\/ze)zm- (6.55)

For the unpolarized cross section of this process, we average over initial helicities and
sum over final helicities,

4 2 2
<|A(ey—>ey)|2>:8i<51—2+51—4>:2e4<sﬁ+5ﬁ> (6.56)

4 \S14534  S12523 S14 S12

where s;; = —(p; + p;)* =—2p; - p; (for lightlike momenta). For diagrams as drawn
above, the Mandelstam variables are s,, = s, and s;, = #. For comparision, the
spin-averaged amplitude squared for Compton scattering obtained from traditional
methods is

m*+m?GBs+u)—su  m*+m*Bu+s)—su

(m?=s) (m2—up

(lAey = en)P) :264[

2m?(s + u +2m?)
(m?—s)(m?—u)

], (6:57)
which in the limit m?/s, m?/u < 1,

(Mer > ep))=2¢(2 +2), (6:53)

u s
is identical to the spinor helicity result but computed with much greater effort.

It is remarkable that each amplitude is given only as a product of twistor brackets and
nothing else. In a sense, twistor variables give a unified representation of different
massless particles; instead of dealing with gamma matrices, Dirac spinors and polariza-
tion vectors separately, to compute amplitudes in spinor helicity formalism one only
needs to deal with twistor variables.



CHAPTER 7

Amplitudes in Nonabelian Gauge Theory

Unlike electrodynamics, in nonabelian gauge theory vertex factors like,

ivit%/;(kl’k2’k3) = gfﬂbc[(kl _kZ)pg[uv + (kZ _kS)lungo + (k3 _kl)vgplu]’ (71)

make calculation of even tree level processes extremely complicated. The reason for
this increased complexity is twofold: (1) colour factors (2) products of gamma matrices,
Dirac spinors, and polarization vectors. As seen with electrodynamics one can use
twistor variables to reduce complexity that stems from (2). For dealing with colour
factors, we introduce the Gervais—Neveu gauge and colour ordering.

Consider an SU(N) gauge theory described by the Yang—Mills lagrangian,
1 v
Lym == TrFHF,,. (7.2)

For computing amplitudes, it is convenient to work in the Gervais—Neveu gauge,
which has the gauge fixing term

1 2
Lgf:_ETr<H71) > (73)
where H,, = J A, — %A A, After gauge fixing, the lagrangian takes the following
form,
L=Te( 1004734 —ivIgar A’ A A, + - g2424°A A (7.4)
- 2 uey z 4 Voo u 4 4 7 74
Let A(1,...,7) denote the scattering amplitude with 7 external gluons, all gluons
considered outgoing. Then the tree level amplitudes have the following color struc-
ture,
AL,...,m)=g"7 >0 Te(T4---T*)A[L,...,n], (7.5)
noncyclic perms
where A[1,...,n]isacolor-ordered partial amplitude. We can read off the color ordered

Feynman rules for vertices from Gervais—Neveu gauge fixed lagrangian,

- 3—glu0n vertex V/Jvlo(p’q’ 7‘) = _ﬁ(gyvpp + gqulu + glolu rv)’
- 4-gluonvertex V., = g,,8,,-

These color ordered amplitudes have the following useful relations among them-
selves

~ 32¢
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1. Cyclicity: A[1,2,...,n]=A[2,...,n,1], etc.
2. Reflection: A[n,...,2,1]=(—1)"A[1,2,...,n].

3. Decoupling of the fictitious photon:

A[1,2,3,...,n]+A[2,1,3,...,n]+A[2,3,1,...,n]+---+A[2,3,...,1,n] =0.
(7.6)
In the following, we adopt a convention in which all particles are considered outgoing.

In this convention, an incoming particle with helicity 5, will become an outgoing
antiparticle with helicity —5.

If we also include a family of quarks in the fundamental representation of the gauge
group SU(N), the interaction Lagrangian is L, = (i g/v/2)¢A¢, and the color ordered
vertex rule is,

- Quark-gluon interaction vertex = V# = %y“.

In general, colour factors for a process can be obtained by drawing double line versions
of Feynman diagrams and contracting indices properly (cf. Appendix B).

71499 — 49

LET Us START by computing an amplitude for gg — gq scattering (and its crossing
related cousins). For the colour ordered amplitude, we have the following contributing
diagram,

iA[lq,zq-,3q>4q] = >Mm< + (7.7)

As with Compton scattering, we are going to compute this process for specific helicity

assignments. In our experience with QED, the only nonvanishing diagrams are those

in which helicities are “conserved”, therefore the only nonvanishing amplitudes are
— 9t 23— 4+ — 9t 2t 4— — 9= 2+ 4+ .

A[lq ,26? 3, ,4q. ],A[lq 27,3, ,4q. ],A[lq ’Zq 35 ,44 ] and the other three amplitudes

obtained by flipping all helicities.

We have,

2/ (1y 2131y, 4] (1 3]2ly, |4
A2t 4= & (U RIGl a4 (312 4]
A 2 512 513

(08 ) -

12)(43)  (13)(42)
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using Fierz identity. Similarly,

g2 (U 210B3ly. 14)  , (14)2

Al17,27 3 47 1= = .
[17:2553541= 5 . TENErTS (7.9)
d
- N i A S E o
et e T T o T T8 sy 7
As with QED the other two amplitudes are related by complex conjugation.
72 99— 8¢
Before computing this amplitude with external gluons, note the following
/ /
e = L, (.11
/ /
e ()= (7.12)
e (psq)-e(psq)= EZ i ng,ﬁ, (7.13)

which are obtained using the form of polarization vectors given in the last chapter and
Fierz identities. Dotting with momenta, we also have

- € 5 q)= ) 1
e (e d)— [qk](kp) .
k-e_(p; q)——ﬁ[qp] (7.15)

Note that p-€(p;q) =0and g - €(p;q) =0, as expected for polarization vectors.

Next, let us consider an annihilation process gg — g g (and its crossing related cousins).
We have the following diagrams for the colour ordered amplitude.

As before, we are going to compute the amplitude for specific helicity assignments.
Again, due to our experience with QED we expect the amplitude to vanish unless the
quarks have opposite helicity. It can also be shown with a clever choice of reference
vectors that the amplitude vanishes unless gluons have opposite helicity.

The only nonzero amplitudes are A[l;, 2;f, 37,41, A[l;, 23, 37,47 ] and two other
obtained by flipping all helicities.
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Consider,

g_2(1|/4+(—151—154)/3_|2]_g2 <1|Va|2]53;ﬁ4vv§1:50.

A[1,25,37,47] = .
Choosing ¢; = p, and g, = p;, we have
63y€4vvét:50 =(e3_- €4 )py + (63 pa)eg, +(eqy - (p3+ py))es_. (7.18)

With above choices of reference momenta, €5(p5; p4) - ps = 0, and e,(p4; p3) - (p3 +
p4) = 0. Using the polarization product identities, the first term is proportional to
(33)[44]=0. Therefore, the second diagram does not contribute.

From the first diagram, we have

ot a— gy 2(13
A[1q32q73 34 ]_g <3 (719)
Similarly, only the first diagram contributes to the amplitude A[l;, 2;?, 3t,47]. We
have

2[23](41)[13](41) _  (14)°(24)

@3)[341(14[14]  (12)(23)(34)(41)" (7.20)

The remaining nonvanishing amplitudes are related by complex conjugation.

73 8888

Before computing this amplitude note the following: If all of gluon helicities are the
same or all but one of the helicities are the same then the corresponding amplitude
vanishes at tree level.

We can go about proving the above claim as follows.

Consider A[1%,2%,3%,...,nT]. In a tree diagram with 7 external gluons, there are
going to be » polarization vectors, one from each external gluon. Moreover at tree
level there are no more than # — 2 three point gluon vertices. In each term of the
partial amplitude, the polarization vector should either be contracted with a momen-
tum factor from a 3-gluon vertex or another polarization vector. As the number of
polarization vectors is 7, while the number of 3-gluon vertices is 7z — 2, there must be
at least one product of polarization vectors in each term of the amplitude.

If we make a clever choice of reference momenta, ¢, = ¢, =--- =¢q,, = p;, all of the
polarization products vanish, and therefore the amplitude is zero.

Now, back to g g — g g scattering. Due to the above argument, the only nonvanish-
ing four gluon amplitudes are those in which two gluons have positive helicity and
two have negative helicity. Starting with A[17,27,3%,4%], we have the diagrams in
Fig.7.1.
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I 2

Figure 7.1: Contributing tree level diagrams for gg — g g process.

We choose the reference momenta to make most of the polarization products vanish.
Choosing ¢, = g, = p,, we have

€_€6,_=0, €_-6,=0, ¢_-¢, =0,
and choosing ¢; = g, = p;, we have
€1_-€3,=0, €3,-€,=0. (7.21)
The only nonvanishing polarization product is

€ e — <q32>[3q2] — (12>|:34] (7.22)
o (9:3)[9,2] (13)[42]

We calculate vertex factors for the first diagram. With p; = —p, — p,, the 125 vertex
is

Vi =—=V2[(e- )} +(p2- 1) +(ps-€r)e! ]
=—V2[(py- 1)y +(ps-€r)ef ]
= —ﬁ[(pz c€q)eh —(py - ez)ef], (7.23)

where first term vanishes because ¢ - €, = 0. Similarly, the 345 vertex is
v
3
=—V2(ps- e3)es—(p3- €)1 (7.24)

Putting both of these pieces together, we have

M v
ivlzngVMS —9; (pr-€1)(ps-€4)(€-€3)

—S12 512

, (7.25)

because all other polarization products vanish.

In the second diagram consider the 145 vertex; it is proportional to

(€1-€4)pr (€1 pa)es+ (€4 ps)ey. (7.26)
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The first term vanishes because €, - €, = 0, the second term vanishes because €, - p, =
€, +q, =0, the third term vanishes because

€4 ps=€4(—p1—py)
=€y (—q4— p4) =0 (7.27)

Therefore the second diagram does not contribute.

Finally, the third diagram, with the four point contact vertex, contains the terms ¢, - €3
and ¢, - €, which are both zero. Hence, it doesn’t contribute either.

The only contribution to this process comes from the first diagram,

A[1,27,3%, 4] :2(]72 €1)(p3 - €4)(€3€3)

—S12

2){21){13)[34](12)[34]
( 2)[21 ][ 1(14){13)[42]
)34

_ 2
T [21] 41](14)

(7.28)

r_|P—\l_|/\

Multiplying the above expression by (21)/(21), using (21)[21] = (34)[34], then
multiplying by (41) /(4 1) and using [34](4 1) =—[32](21), we have

(12)*

A[17,27,3%,41] = D05 BHET (7.29)

Using cyclic property of color-ordered amplitudes, we can obtain all other amplitudes
in which the negative helicity gluons are adjacent from the above amplitude. For

example
A[1H,27,37,41] = @23)" A[17,24,3T 47 ] = (14)*
(12)(23)(34)(41)’ o (12)(23)(34)(41)
(7.30)
Using U(1) decoupling A[1,2,3,4]+ A[2,1,3,4]+ A[2,3,1,4] =0,
A[17,2%,37 4t =—A[21,17,37,4T]—A[21,37,17,4T], (7.31)

and simplifying using the Schouten identity, we can get amplitudes in which negative
helicity gluons are not adjacent,

T+ gt (13)*
A[17,24,37,4%] = OB (7.32)

These are examples of the famous Parke—Taylor amplitudes for » = 4. An induc-
tive proof of the general Parke—Taylor formula for any » will be given in the next
chapter.
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7.4  Three particle special kinematics

Despite appearing simpler than the four point amplitude, there are some kinematic
considerations for three point gluon amplitudes due to which we have to be careful
when choosing reference momenta in polarization vectors. As a result we cannot make
“clever choices” as we have been doing till now to simplify amplitudes.

The first thing to note is that, for real valued momenta the all three point gluon
amplitudes vanish due to arguments at the beginning of the last section. However, in
the next chapter we are going to introduce complex shifts of momentum, so a shifted
3-point amplitude would not in general be zero.

Consider a scattering process of three massless particles with all particles outgoing,
having momenta p, g and r. Momentum vectors are lightlike, i.e., p? = ¢g* =2 =0,
and satisfy momentum conservation p +¢q + r = 0. We have

(pa)lpal=2p-q=(p+q)=r>=0, (7.33)

which means either (pg) =0or [pg] =0". Let (pg) = 0and [pq] # 0; then we
have

[pqlgr)=—pld|r)=—{pl(F+))Ir)=0, (7.34)

therefore (g ) = 0. Similarly, one can also show (p r) = 0. Hence we have (p g) =
(g r)=(r p) =0, or alternatively

|p) o< lg) o< |7). (7.35)
Had we taken [pg] = 0 and (p g) # 0, we would have concluded [pg] =[g 7] =
[» p]=0and

|plocig]oc|r]. (7.36)
For three point amplitudes with external gauge bosons, one must take care when

choosing reference momenta for polarization vectors and make sure that the choice
does not lead to a spinor bracket vanishing in the denominator.

Let us now consider the color-ordered three point gluon amplitude,

3
A[17,27,37]
:_[71612](12)@32)[23]"‘(%2)[3612][‘112](21)"‘(%1)[3‘11][‘123]<32> (7.37)
(41 11[9,2])(g53) -

"If momenta were real valued we would have (p ¢)* = [q p] and therefore (pg) =0 <= [pq]=0.
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Due to three particle kinematics, we cannot make a clever choice of reference momenta
g; to simplify the amplitude without making the denominator zero. If we have [1) o<
|2) o< |3), each term in the numerator vanishes and the amplitude becomes zero, so
we choose |1] o< |2] o< |3]. With this choice, the first term vanishes and,

(7:2)[39,][9:2](21) + (g5 D[39,][4,31(32)
[9:1][4> 2](% 3) .

Using momentum conservation relations and the Schouten identity, the amplitude
can be simplified to

A[17,27,3 ] =—

Lo (12 (12
Al253 ]_(23)(31)_(12)(23)(34)' (7:38)

Similarly, we can also compute the amplitude in which two helicities are positive and
one is negative,

[12) _ [12]*
[23][31] [12][23][34]

A[1%,2%,37]= (7:39)
Remarkably, these amplitudes have a form very similar to what we obtained for four

point gluon amplitudes. As we shall see, this is not a coincidence: these are both
special cases of the general z-point MHV amplitude.



CHAPTER 8

Complex Shifts, Recursion Relations, and the Parke—
Taylor Formula

In this chapter we are going to give an inductive proof of the Parke—Taylor formula
for n-gluon MHV amplitude. The base case for this induction proof is the three
point amplitude A[1,2,3], which we computed in the last section of the previous
chapter. In the next section we start with a general description of complex shifts and
on-shell recursion relations before specializing to the BCFW shift. Finally, we prove
the Parke—Taylor formula using BCFW recursion.

8.1  On-shell recursion relations

We are now going to set up the machinery of on-shell recursion relations for com-
puting tree level amplitudes. For an n-point on-shell amplitude, introduce 7 shift
vectors 7;, which could, in general, be complex valued. We require 7; to satisfy the
following

1. Momentum conservation: >.”_ 7, =0,
1=1"1
2. Orthogonality: 7, - r; =0, and in particular rl.z =0foreach i,

3. p;-7; =0(nosum) foreach i.
With these, we define shifted momenta

pi=pi+zr;, (8.1)

where z € C. By the requirements (1)—-(3) on 7;, the shifted momenta satisfy momen-
tum conservation >.7_, p; =0, and the on shell condition 7 =0.

In general, an amplitude will have Feynman propagators for every internal line. An
internal line carrying momentum P; = 3>, ; p;—where I indexes a collection of
momenta—will bring a factor of 1/P;} due to the Feynman propagator. With shifted

momenta we define P, = >".cs Pi»and we have
P2 = (P, +zR;)} = P} +2zP, - R, (8.2)

95
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where R; =37, 7;, and the z? term vanishes due to property (2) of the shift vectors.
We can pull out various factors to write

A P; P;
Pr=—L(z—, with 2z, =— . 8.
I ZI< 1) 1 2P, -R, (8.3)

As the shifted momenta satisfy momentum conservation and the on-shell condition,
we can define a shifted on-shell amplitude /ll\n(z) with p; — p;. Due to arguments of
the last paragraph, each Feynman propagator carrying momentum P; — b, will bring
a simple pole at z = z; into the shifted amplitude. If we are interested only in tree
level processes, the amplitude does not have any branch cuts or other singularities;
simple poles coming from Feynman propagators are the only singularities.

The shifted amplitude as defined above is a function of z in the complex plane. In fact,
for tree level amplitudes, fin(z) is a rational function of z and is therefore holomorphic
everywhere except at its poles.

Consider the function /i(z) /z defined on the complex plane; it has a simple pole at
z =0 with residue A, = fin(z =0), the unshifted amplitude. If we draw a contour in
the complex plane containing all of its simple poles, including the one at the origin,
we can integrate over this contour and use the residue theorem to write

A,(z)

A+ 2 Res,, == =B, (8.4)
Zr

where the sum is over all poles, and B,, is the residue “at infinity”. When B, =0, the
recursion works and we have the z#-point amplitude

Az
An:—ZResZ:Z[ ( ), (8.5)
Zr

z

as a sum of residues.

As discussed above, for tree level processes, poles occur only when a shifted propagator
goes on-shell at z;, i.e., ]312(2 = z;) = 0. When a propagator goes on-shell near z;, it
corresponds to the exchange of a real particle, and as a result the total amplitude can
be written as a product of two lower point on-shell subamplitudes,
A nearz; A 1 A Zp A 1 a
A (z) ~ " Ap(z))Ar(z) =— A(z)) 5 Ag(z))- (8.6)
I

With this it is easy to compute the residue of A,,(z)/z at z;. We have,

B 4y 1) o). (57)
1

—Res,_,
z
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Therefore the unshifted on-shell amplitude is given by

Au= 3 Aoy g Ante) = 3 (T (5.9)
I

1 1

where the sum is over all factorization channels 7. Hence, an z-point on-shell ampli-
tude is given as a product of lower point on-shell amplitudes. This forms the basis of
the BCFW recursion relation that we will introduce in the next section.

8.2 Britto—Cachazo—Feng—Witten

In this section we are going to introduce a very special kind of shift called the BCFW
(Britto—Cachazo-Feng—Witten) shift to derive BCFW recursion relations and finally
prove the n-point Parke—Taylor amplitude formula.

GIVEN AN 7-POINT AMPLITUDE with external (on-shell) momenta p,,..., p,,, pick
out two of these momenta, say p; and p; (i < ) and define shifts as follows,

1=1il+2l] =), 71=11 ) =1i)—zli). (8.9)

This is called an [, j) shift. Using—2p# = (p|y*|p], we can write the shifts in terms
of momenta,

A z . . A z . .
pi=pi =5 (ily¥Ii] and pP=pi+ = (ily¥l (8.10)
so that the shift vectors are,
1,. . 1,. . .
rlf‘:—z(z|}/"‘|]], r]H:+§(z|}/“|]], 7, =Owhenk #ior ;. (8.11)

An application of Fierz identities shows that these vectors satisfy the properties (1)—(3)
required of shift vectors.

For Yang—Mills theory, in particular, the BCFW shift satisfies lim,_, . fin(z) =0, when,
in terms of helicities, the [z, ) shift looks like one of [—,—), [—,+) or [+, +). If the
above holds, B,, =0, and the recursion going to work.

Before going on to prove the Parke—Taylor formula, let us compute the four point
gluon scattering amplitude A[17,27,3%,4 ] using a [1,2) shift.

The first thing to note is that each subamplitude has to have at least three external
points. Secondly, an internal propagator can go on shell only when 1 and 2 are in
different subamplitudes. For if 1 and 2 are in the same subamplitude (cf. Figure
below), the propagator carries momentum Py, — Py, = py, + p, = py + py = Ppa»
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which does not go on-shell for generic momenta.

1 4
Ph

) 12 (8.12)

Finally, as we are calculating the color-ordered amplitude, we only draw diagrams in
which gluons are labelled cyclically. With all these things in mind, there is only one
factorization channel (two if we account for helicities) for the four point amplitude
with a[1,2) shift.

2 I
S Py,
A[17,27,3%,4%] = (8.13)
21 (9
3 4
Using the recursion formula,
A5 4+]_A[1—,P2—3,4+]141[2—,3+,—Pz§] +A[1—,P2+_,,,4+]A[2—,3+,—P2—3]
bl b b - P2 P2
23 23
(8.14)
Consider the three point amplitude,
N P 4P
A B 4] = o2 (5.15)
[1Py][41]
The shifted momentum is on-shell, i.e.,
Pl =(py+ p5) = (P + pu)* =[14](14) =[14](14) =0. (8.16)

For generic momenta this is only possible if [14] = 0. In the numerator we have
1) [Py 1= =P ] = (b + po) ] = (1 + p)l4] = pr4] = [1) [14] =0, (8.17)

A
which, again, for generic momenta is only possible when [P,;4] = 0. Similarly, we
A A A
can also show [1P,;]=0. As P); goes on-shell, there are three powers of zero in the
numerator and only two in the denominator, therefore, this amplitude vanishes.
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Only the first term contributes to the four point amplitude. Using P3, = (23)[23]
and the form of three point amplitudes, we have

= , (8.18)

A

where to simplify, we used a ]323>[1A323 3]=—(12)[23]and (1323 4)[1323 2]1=—(34)[23].

For an amplitude in which the negative helicity gluons are not adjacent, like A[17,2%,37,4 1],
the calculation is exactly the same, but instead of a [1,2) shift, one has to start with a

[1,3) shift.

Adapting the general recursion relation for a BCFW [z, ;) shift, we have the BCFW
recursion formula,

A= A g Ane) =3t (] (5.19)

where the sum is over all factorization channels such that p; and p; are on different

A
subamplitudes. For otherwise, as in the 7 = 4 case, the momentum P; does not go
on-shell.

8.3 Proof of the Parke—Taylor formula

Computing an z-point MHV amplitude for gluons proceeds very similarly to the
computation of the four point amplitude. For reference, the 7-point Parke—Taylor
formula is

(12)°

(12)(23)(34)---(n1)’

A[17,27,3F,...,nT] =

(8.20)

The proof will proceed by induction on the number of gluons 7. We already have the
result for 3 point amplitudes, which is going to serve as the base case of induction. As
induction hypothesis assume that all lower point amplitudes are given by the Parke—
Taylor formula. To compute the # point amplitude A[17,27,3% ..., n 1] recursively,
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we are going to use a[ 1,2) shift. According to BCFW recursion, the amplitude is

(8.21)

k—1"

where the sum includes all factorization channels and there is also a sum over possible
helicities of the exchanged gluon. In terms of subamplitudes, we have

=>>" <AL[i—, ph k.. .,n+]iAR[—ﬁ,—b,é—,3+,...,(/e — 1)+]>. (8.22)

k=4 h==%

Now, using the fact that all gluon tree amplitudes vanish, except » = 3, in which
one of the gluons has a helicity different from the rest vanishes, only two diagrams

survive
—_ _ A A A 1 A A _
A[17,27,3, . 0T = A1 ,—Pl*;l,nJr]P—zAR[Pan 3L (n—1)7]
1n
A A A 1 & A _
+A;[17,P5;,4%,. ,nﬂﬁAR[ Py,27,37] (8.23)
23
As in the case of the four point amplitude,
A_A A A [ﬁl 7’1]3
A[1_>_P1—;>n] = + - O’ (824)
[n1][1Py,]
because
P} =(py+p,) =[1n](1n)=[1n](1n) =0, (8.25)

which can only occur for generic momenta if [i n]=0. In the numerator,
11 [Py, )= =Py ln]=~(hy + po)ln]==piln]= [)[1n] =0, (8.26)
which can only occur for generic momenta if [P, n]=0. Similarly,
) [Py ] = ) [1n] =0, (8.27)

A A
and therefore [1P;, ] = 0. There are three powers of zero in the numerator and two
A
powers in the denominator, hence as P,,, goes on-shell, this three point amplitude
vanishes.
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Now, we are only left with

1

A[17,27,3 . 0T = A, 17, P, 4+,...,n+]P2 Ag[—P5,27,37] (8.28)
23

23°

A 1 isan—1 point amplitude and Ay, is a three point amplitude. By induction hypoth-

esis,
A A A i]/:\) 4
AL[l_,P£,4+,...,n+]: — A< ) , (8.29)
(1Py3)(Py34)(45)---(n1)
and due to the induction base case,
N P, 3T
P S ST P -] (8.30)
[P5;2][23]

A

Using Py, = (23)[23], and the relationships (i 1323)[1323 3]=—(12)[23]and (1523 4)[1323 2]=
—(34)[23], we can simplify the » point amplitude to

(12)*

A[17,27,3%,...,nT]= EEE T ENCTE

(8.31)

This concludes the proof of Parke—Taylor formula.

For a version of the formula in which the negative helicity gluons are not adjacent,
ie., an amplitude like A[17,2%,...,7i7,...,n"], the proof proceeds exactly as above
but instead of a [1,2) shift, one has to start with a [1,:) shift to build appropriate
recursion relations.
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APPENDIX A

Reference Formulae

Some formulae that are used throughout the main text are collected here for quick
reference.

Minkowski metric has the mostly positive signature: g, = diag(—, +,+,+). We define
two-dimensional generators of Lorentz group,

O"UI; =(L,0), " =(1,—0), (A.1)

where o are Pauli matrices. Two component spinor indices are raise and lowered
using

y 01
eﬂb:eﬂb: (_1 O) =—€, =€ (Az)

A.1  Integrals

Feynman’s trick to convert a reciprocal of products into an integral:

1 —n
= | A (a3)
where .
Jan:(n—l)!f dx;...dx,8(x;+---+x,—1). (A.4)
0
For just two factors it reduces to:
1 ! 1
= d A.
A4, L A+ (1—x)BY (A-s)
Symmetric integration identity:
—_— =a . A.
| Gtk @) =d g, | S8 (A6)
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For d-dimensional Euclidean space integrals:

. d d
J dék (kY _r(b—ﬂ—i)r(“Jr7)D_(b_a—d/2)
(

2m)? (k24D (4m)d2T(b)T()

(A7)

Wick rotation to convert a Minkowski space integral to a Euclidean space integral:

/e]»:/e]» forj=1,...,d —1, and/;ad:iko,sothat

/e2:/;:2:/é12+---+é§ and A% =id%k

A.2  Gamma function identities

Expansion near poles:

T(—n+x)= =L [i —y +ik‘1 + O(x)}

k=1
Derivative at positive integers:
m—1

I'(m)=(m— 1)!<—}/ +> %)

k=1

A.3 Gamma matrix identities

Gamma matrices satisfy the following Clifford algebra:

{rt,y"=—2¢""

Some properties of the yz:

ys =1
{rt,ys}=0.

Trace identities:

Tr1=d
Tr[odd no. of y#s]=0
Try; =0
Tr[y5(odd no. of y#s)] =0
Trly "y ]=—4g"
Tr[df]=—4(ab)
Ty 'y y Py 1=4[g" g™ —gHF g™ + ¢ g""]
Tr{d¥¢d]=4[(ab)(cd)—(ac)(bd)+(ad)(bc)]

—_t e e

(A.8)

(A.9)

(A.10)
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Some contraction identities:

riy,=—d (A.23)
vy v, =(d—=2)y" (A.24)
yidy,=(d—2)d (A.25)
vy yPy, =4g"F —(d—4)y"y" (A.26)
rid¥y, =4ab)—(d—Hd¥ (A27)

A.4 Group representations

A representation R of a compact nonabelian group is specified by a set of D(R) x D(R)
matrices 7. These matrices satisty the Lie algebra of the group:

(T8, Th=if*beTg, (A.28)

where the structure coefficients f#4¢ are real and completely antisymmetric.

Adjoint representation of a compact nonabelian group is given by

(T)he =—if ™. (A.29)

Index of the representation 7'(R), and the quadratic Casimir C(R), are defined as,
TrTeTE =T(R)*" and TETE=C(R), (A.30)

respectively. These quantities satisty 7(R)D(A) = C(R)D(R).

For fundamental representation N of special unitary groups SU(N'), we have

1 N?—1
T(N):E and C(N)= N (A.31)

and for the adjoint representation 7(A) = N.
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APPENDIX B

Feynman Rules

Feynman rules for quantum field theories used in the main text have been reproduced
here for reference.

B.1  For scalar field theories

Ignoring interactions for a moment, the free scalar propagator in momentum space is

given by

1
AR ———— B.
&)= =i (B.1)
and the free fermion propagator in momentum space is given by
—p+tm
S(f)=——2 (B.2)

 prml—ie

In each of the following theories, internal scalar lines carrying momentum & are
accompanied by a factor of —i A(k?), and internal fermion lines carrying momentum

p are accompanied by a factor of —i S(4).

B.1.1  Scalar field theory with a cubic self-interaction

The renormalized Lagrangian that describes this theory is
L=—17,0080.6— 17,24+ 17 v 414 (B.3)
T PP Ty 67" ' 3

Due to the cubic self-interaction this theory has just one interaction vertex, at which
three scalar lines meet. The Feynman rules are as follows.

1. The expression corresponding to each diagram contains the following pieces:

— afactor of 1 for each external line,
— afree field propagator A(k?)/i for each internal line with momentum &,

— and the following factors for the vertices
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2. Ina tree level calculation, the three point vertex factor should be taken to be 7x
and the counterterm vertices should be ignored, as Z; = 1+ O(x?).

3. A diagram with L closed loops will have L undetermined momenta. Each of the
undetermined momenta should be integrated over.

4. If there are exchanges of internal propagators and vertices that leave the diagram
unchanged, it represents that an overcounting has occurred, and the diagram is
said to carry a symmetry factor. The final expression should be divided by the

symmetry factor.

B.1.2  Scalar field theory with a quartic self-interaction

The renormalized Lagrangian for this theory is
L=—lz,0088.6—17, 24— L7 20 (B.4)
T P T TR 4

Due to the quartic self-interaction this theory has just one interaction vertex at which
four scalar lines meet. The Feynman rules are as follows

1. The expression corresponding to each diagram contains the following pieces:
— afactor of 1 for each external line,
— afree field propagator A(k?)/i for each internal line with momentum &,

— and the following factors for the vertices
N =—1 Z/l /1,

ek =iz D iz — DM

2. Inatree level calculation, the four point vertex factor should be taken to be —i A
and the counterterm vertices should be ignored, as Z; =1+ O(A).

3. A diagram with L closed loops will have L undetermined momenta. Each of the
undetermined momenta should be integrated over.

4. If there are exchanges of internal propagators and vertices that leave the diagram
unchanged, it represents that an overcounting has occurred, and the diagram is
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said to carry a symmetry factor. The final expression should be divided by the

symmetry factor.

B.1.3 Yukawa theory

The renormalized Lagrangian for Yukawa theory is

L= i2)07 9= 2, midd— 5750463, — S LM’
Y280+ S L — LTV § (B.s)

Apart from the Yukawa vertex, self interactions for the scalar field have to be added to
make sure that the theory is renormalizable. This leads to three interaction vertices in
this theory. The Feynman rules are as follows.

1. The expression corresponding to each diagram contains the following pieces:

— afactor of 1 for each external scalar,

— afree field propagator A(k?)/i for each internal scalar with momentum k,
— afactor of u (p) for each incoming fermion,

— afactor of 7,(p’) for each outgoing fermion,

— afactor of 9(p) for each incoming antifermion,

— afactor of v, (p’) for each outgoing antifermion,

— afree field propagator S(#)/i for each internal fermion with momentum p,

— and the following factors for the vertices

P P

= _i(Z¢ —1)p—(Z,,—1)m,

Rk =iz DR iz — M

2. In a tree level calculation, the vertex factors should be taken to be 7 g, 7x and
—1 A respectively, and the counterterm vertices should be ignored, because Z; =

1+0(g% %% A).

3. Overall sign of tree diagrams has to be determined by the relative direction of
arrows on two fermion lines joined by a scalar.

4. A diagram with L closed loops will have L undetermined momenta. Each of the
undetermined momenta should be integrated over.

5. Each closed fermion loop gives a factor of —1.



6. If there are exchanges of internal propagators and vertices that leave the diagram
unchanged, it represents that an overcounting has occurred, and the diagram is
said to carry a symmetry factor. The final expression should be divided by the

symmetry factor.

B.2  For electrodynamics
Free photon propagator in R gauge (in momentum space) is

k k
Ayv(k): ]€2126<g’uv_(1_§) /l:2v>' (B6)

Feynman gauge corresponds to the choice & =1 and is convenient for evaluation of
loop diagrams in spinor electrodynamics, while the £ = 0 corresponds to the Lorenz
gauge, which is convenient for evaluation of loop diagrams in scalar electrodynamics.
For completeness, propagators for scalar and spinor fields are given by

_ 1 _ —f+m
— e wd (= )

A(k? = ;
=) pr+m?—ic

respectively.

B.2.1  Coupled to spinors

A theory of spinors coupled to the electromagnetic field is described by the following
renormalized Lagrangian

L= 2P E, 4 i 24— Lmii+ Lie A, (B.5)

Apart from the counterterm vertices, this theory has an interaction vertex that connects
a photon to a fermion-antifermion pair. The Feynman rules are as follows.

1. The expression corresponding to each diagram contains the following pieces:
— afactor of eff “(k) for each incoming photon,
— afactor of e’j,(k’ ) for each outgoing photon,

— afree field propagator A, (k)/1 for each internal photon carrying momen-
tum £k,

— afactor of # (p) for each incoming fermion,

— afactor of 7,(p’) for each outgoing fermion,

— afactor of v,(p) for each incoming antifermion,

— afactor of v, (p’) for each outgoing antifermion,

— afree field propagator S(#)/: for each internal fermion with momentum p,

— and the following factors for the vertices
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u =iZey"

v iz, 0z, —)m,
k ' ,

M W y :—Z(Z3—1)(/€ g,uv_/e,ukv)'

2. Inatree level calculation, the interaction vertex factor should be taken to be zey#
and the counterterms should be ignored, because Z; = 1+ O(e?).

3. Overall sign of tree diagrams has to be determined by the relative direction of
arrows on two fermion lines joined by a photon.

4. A diagram with L closed loops will have L undetermined momenta. Each of the
undetermined momenta should be integrated over.

5. Each closed fermion loop gives a factor of —1.

6. If there are exchanges of internal propagators and vertices that leave the diagram
unchanged, it represents that an overcounting has occurred, and the diagram is
said to carry a symmetry factor. The final expression should be divided by the

symmetry factor.

B.2.2  Coupled to scalars

A theory of complex scalars coupled to the electromagnetic field is described by the
following renormalized Lagrangian

1 2
L=— Zzw‘ F,,—2,0"$10,¢— 2, M*$'

— LGP+ 2, $1(8,0)— (0,88 - Zi$ $AtA,. (Bo)

1. The expression corresponding to each diagram contains the following pieces:

a factor of eff *(k) for each incoming photon,

a factor of e’j,(k’ ) for each outgoing photon,

a free field propagator A , (k)/i for each internal photon carrying momen-
tum &,

a factor of 1 for each external scalar line

a free field propagator A(k?)/i for each internal fermion with momentum &,

and the following factors for the vertices
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u o~ :iZle(/el—i-/ez)#, ,/ :—2Z:Z4€2g[uv, \\A// :—Z.Z/{/{,

\x \\\ /‘/ \\\
kz \\ V \ / \

Lk kiR iz, — DM,

L3 k . )
Iu ANNAANKANAANNAAN Y :_1(23_1)(]€ glu\/_kluk\/)'

2. In a tree level calculation, the interaction vertex factors should be taken to be
ie(ki+ky), —2i%g 4> and —i A respectively, and counterterms should be ignored,
because Z; =1+ O(e?, A).

3. A diagram with L closed loops will have L undetermined momenta. Each of the
undetermined momenta should be integrated over.

4. If there are exchanges of internal propagators and vertices that leave the diagram
unchanged, it represents that an overcounting has occurred, and the diagram is
said to carry a symmetry factor. The final expression should be divided by the

symmetry factor.

B.3  For nonabelian gauge theory
The Yang-Mills Lagrangian along with a gauge fixing term give
1 Sl ,
Lyn + Ly =§Ae#< 8 — 9, 9)A” + 55 'A% 3, J A
1
abc pa by c 2 rabe rcde ga by gc 4d
—gfPCAA QﬂAV—ng [ECATHA AHAV. (B.10)

If we ignore gluon self-interactions for a moment, the first line gives the free gluon
propagator in the R £ gauge,

dab kuk,
A‘:ﬁ(k):m<gw—(l—5) /ZZ > (B.11)

Choice of & =1 corresponds to the Feynman gauge and proves to be convenient for
loop calculations when the gauge field is coupled to spinors, and £ = 0 corresponds
to the Lorenz gauge and proves to be convenient for loop calculations when the gauge
field is coupled to scalars.

Vertices for gluon self-interactions are the same, whether the theory is coupled to
spinors or scalars. Vertex factors are as follows.
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b,y
k,
ap Gl =iV Rk k)
\ = g Uk — k), g + (ky—s) 8y, + (ks —Ry), 20,
ks P f P
C,p
d,/u d,O'

~x7abcd . abe rcde
E‘i = lVyvpo = _ng[f f (g,ulogva _g[uagvp)
+facefdbe(gyagpv_gpvgpa)

b’ 6P ade rbce
’ + L8800 — 8o 80)
k k . 5 )
a, 4 99999 X18~ b,y =—i(Z;—1)(k gyv_kykv)é\ﬂ :

Gauge fixing also leads to the introduction of ghosts. The ghost Lagrangian is
Lgh:—Bﬂécé’ﬂcc+gf“bCA‘;3f‘c‘bcc. (B.12)
The kinetic part of the Lagrangian gives the ghost propagator

A= O (B.13)
k2 —ie

Since ghosts are Grassmann fields, diagrams with a closed ghost loop will receive a fac-
tor of —1. Interaction of ghosts with gauge fields leads the the following vertex

c
ko,
a, i er\ = gf“bcl#
b

B.3.1  Coupled to spinors

Spinors in representation R of the gauge group carry a colour index, and couple to
the gauge field via the following Lagrangian

Lfermion = ZZZSZZJSLZ _Zm’”SZiSbi +ZlgAdlu¢_i}/#(TIg)ij ¢]’ (B-I4)

where T} are generators of the gauge group in representation R. Number of colours is
equal to the dimension of the representation. Due to colours, the fermion propagator
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carries additional indices,

_(—f+m)d/

- , B.
pERwm—— (B.15)

s/ (#)

and so does the counterterm for fermion propagator,

| > | =(—i(Z,— 1) —i(Z,—1)m)S/.

Rules for incoming and outgoing fermions is identical to electrodynamics. The
interaction vertex gives the following factor

i

a, u = i(VaH)i] :iz1g}/M(T1?)~]

z

B.3.2 Coupled to scalars

Complex scalars in representation R of the gauge group carry a colour index, and
couple to the gauge field via the following Lagrangian

Lscalar = - Zzgﬂ¢Ti 3y¢i _ZMM2¢Ti¢i
1 tg b 1oz Al (1 GtV T tipayi(gu
=504 i ng]-+nglAM[(8 PUNTR) ;— " (TR)] (2 ¢j)]
— Z, A AL ST(TRTE) 6, (B.16)
where T} are generators of the gauge group in representation R. Number of colours

is equal to the dimension of the representation. Due to colours, the scalar propagator
carries additional indices,

; S8/
D)) = i (B.17)

and so does the counterterm for scalar propagator,

kB = (—i(Zy = DR —i(Zy = 1)M)S, .
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Rules for incoming and outgoing scalars is identical to electrodynamics. Interactions
give the following vertex factors

ky
a, 4 \%Ub%i =iZ,g(ky+ky) (Tg)]
ky
]
a, u N i / [
: :—iZ4g2(TgT§+T1§T§)ijgyw 1{ ——%ZM(SUCS\M"‘SZ'@N)
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APPENDIX C

Coloured Ordered Feynman Rules

The Yang—Mills Lagrangian in the Gervais—Neveu gauge is of the form,

1 . 1 ,
L= Tr<—§é”‘AVé’#AV —iVIgIHA A, + g A ANAV>. (C.1)

Treating A* as a matrix field, (A¥ )l.j = A”W(T“)l.j , the propagator for (Af‘)ij is

ab\ k1,12 N 13”&”
(AL (RS =(T)/(T7), e (C.2)

In the double line notation, the gluon propagator is,

i [

YA

j k (C.3)

Arrows point from an up index to a down index. Having taken colour factors into
account already, the vertex rules become very simple

- 3—p0i1’1t vertex Vyvp(P’q’ 7') = _l 1/Eg(g[uvplo + gvloqlu + gplu 7Ilv)’

. — 52
- 4-pointvertex V ,, , =18°¢,,8,,-

Due to the way colour indices are contracted the vertices in double line notation look

SR

Colour factors are assigned by starting at an external point and following arrows
backwards. For example, in the following diagram

1 4

N
N

(C.s)
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~100{(3)

the colour factor is Tr 7 7% T* T*. Similarly, in general for a diagram with 7 external
gluons, the colour factor will be Tr 74 T% ... T4,

As a final note, when there are massless quarks in thﬁ: theory that couple to gauge fields
by an interaction term of the form L, = i(g/v/2)¢A¢, the fermion propagator will
just be a single line, but will carry colour indices,

sih=—2L_s. (C.6)

N p>—ie !
The vertex factor will be,
ig

- Quark-gluon vertex, i V¥ = ﬁ}/ﬂ ,

and finally in double line notation, the quark gluon vertex will look like

7
RN -

where the single lines are for quarks and arrows are drawn so that they are consistent
with arrows on fermion lines in traditional Feynman diagrams.
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