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1 Introduction

Description of quantum thermodynamic cycles is a subject filled with deep implications, and
allows us investigate the relation between, and the limits to validity of quantum mechanics and
thermodynamics. The major portion of this project was dedicated to studying the literature
surrounding quantum heat engine cycles, and comparing their properties to their classical
counterparts.

In this chapter, we start by looking at the foundational issues in thermodynamics and see that,
how for the resolution of these issues, we require information to be physical. The following
section summarises some results in information theory that are of interest in the description of
quantum heat engines, before moving on to describe Maxwell’s demon, the Szilard engine, and
Landauer’s principle.

1.1 Entropy and information

If we consider an event A with possible outcomes {ai} which have an associated probability of
occurrence P(ai), then the information obtained by learning that A = a j in a random trial, is
defined h[P(a j)] = −K log P(a j), where the positive constant K is to be determined or selected
later. It is more useful to associate an amount of information with the event and all its possible
outcomes

H(A) = −K
∑

i

P(ai) log P(ai), (1.1)

which is defined by averaging the information associated with each outcome over the set of all
outcomes. With K = kB, we recognize (1.1) as the entropy from statistical mechanics.

If we have two events A and B, with associated outcomes {ai} and
�

b j

	

respectively, then for the
joint probability distribution P(ai , b j) we have

H(A, B) = −K
∑

i, j

P(ai , b j) log P(ai , b j), (1.2)

which is the information associated with the events A and B. Moreover, it can be shown [1] that
H(A), H(B), and H(A, B) are constrained by the inequality

H(A) +H(B)≥ H(A, B), (1.3)

which in particular, ensures that the mutual information defined by

H(A : B) = H(A) +H(B)−H(A, B), (1.4)

remains non-negative. The mutual information is a measure of the correlation between events A
and B. In particular, we note that

H(A : B) = −K
∑

i, j

P(ai , b j) log

�

P(ai , b j)

P(ai)P(b j)

�

, (1.5)

vanishes when P(ai , b j) = P(ai)P(b j), that is when the events are independent. Only if learning
the values of B changes the probabilities of A will the mutual information be non-zero.
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1.1.1 Maximum entropy method of assigning probabilities

For real events, the probability distribution P(ai) must often be determined with limited knowl-
edge of the system, and any bias in selecting the probabilities must be minimized. In order to do
this, we select the most uniform distribution that is consistent with what knowledge of the event
we do have. In particular, if we know nothing about the event, we should set all probabilities
equal. One way to determine the most uniform probability distribution is to maximize the
entropy of the event subject to constraints imposed by our knowledge.

For an illustration of this maximum entropy principle, we consider a physical system that can
exist in a number of distinct configurations {n}, with energies {En}. If we are to find probabilities
Pn that the system be found in the nth configuration, and we are given that the average energy
is U , we use the Lagrange multipliers method to maximise the entropy H, subject to constraints
∑

n Pn = 1 and
∑

n PnEn = U .

Lagrange multipliers λ and β are introduced, and quantity

Ĥ = H +λ

�

1−
∑

n

Pn

�

+ β
�

U −
∑

PnEn

�

, (1.6)

where H = −
∑

n Pn log Pn, is varied. Varying the probabilities and setting the variation of Ĥ to
zero gives

dĤ =
∑

n

(− log Pn − 1−λ− βEn)dPn = 0, (1.7)

the solution of which is Pn = e−(1+λ)e−βEn . The normalisation condition
∑

n Pn = 1, gives
e1+λ =

∑

n e−βEn and consequently

Pn =
e−βEn

Z(β)
, Z(β) =

∑

n

e−βEn . (1.8)

Moreover, if we put K = kB, identify the information of the probability distribution as the entropy
of the system S = −kB

∑

n Pn log Pn, and recall the thermodynamic relation

dU
dT
= T

dS
dT

, (1.9)

it can be shown that β = (kB T)−1. We defer the proof to the next paragraph and identify
Z(β) as the partition function of the system and the probabilities in (1.8) as the Boltzmann
distribution.

In order to show that β = 1/kB T , we substitute the probabilities (1.8) into the expression of
entropy

S
kB
= −

∑

n

e−βEn

Z(β)
[−βEn − ln Z(β)]

= Uβ + ln Z , (1.10)

and take its temperature derivative

1
kB

dS
dT
= β

dU
dT
+ U

dβ
dT
+

d ln Z(β)
dT

. (1.11)

Next, we note that

d ln Z(β)
dT

=
1

Z(β)
dZ(β)

dT

=
1

Z(β)
d

dT

∑

n

e−βEn

= −
dβ
dT

∑

n

e−βEn

Z(β)
En

= −
dβ
dT

U , (1.12)

5



use the thermodynamic relation (1.9) to get

1
kB

dS
dT
= β

dU
dT
=

1
kB T

dU
dT

, (1.13)

and conclude that β = 1/kB T .

We see that applying principles of information theory has led us to a fundamental result in
thermodynamics. Another example of a connection between information and thermodynamics
is Maxwell’s demon—a thought experiment that calls into question the validity of the second
law.

1.2 Maxwell’s demon

The setup for this thought experiment involves a
box filled with gas at uniform temperature that is
divided into two parts L and R. There is a trapdoor
between the two parts that is controlled by an in-
telligent being, who can observe the gas molecules
near the trapdoor. When the being sees a faster
than average molecule approaching the trapdoor
from L to R, it allows the molecule to go to R; and
when it sees a slower than average molecule ap-
proaching the trapdoor from R to L, the being lets
it through.

As this process goes on for a sufficiently long time,
the average speed of molecules in L becomes less
than the average speed of molecules in R. According to the kinetic theory of gases, the average
speed of molecules is proportional to the temperature. Hence, due to the being’s actions the
temperature in L decreases while the temperature in R increases, against the temperature
gradient.

This apparent violation of the second law of thermodynamics can be resolved if there is a physical
information cost associated with the being’s actions. This information cost is encapsulated in
the Landauer’s principle. However, before looking at the resolution, we analyse the Szilard
engine—in which the being’s actions allow us to convert heat into mechanical work indefinitely,
without any obvious side-effects.

1.3 Szilard engine

The Szilard engine consists of a box containing a single molecule of an ideal gas, in contact with
a thermal reservoir at temperature T = 1/kB T , and a demon who controls a movable partition,
and can measure the position of the gas molecule in the box [1].

Let’s say the box has length L, uniform cross-section area A, and volume V = AL. The thermody-
namic cycle involved in the Szilard engine, consists of the following four steps [5]:

1. Insertion of the partition The demon inserts the partition at position l (0< l < L) reversibly
and quasistatically. Let r denote the position of the molecule, with r = 0 meaning that the
molecule is to the left of the partition, and r = 1 meaning that the molecule is to the right
of the partition. If we put x = l/L, the probability that the particle is found to the left is
P(r = 0) = x and the probability that the particle is found to the right is P(r = 1) = 1− x .

2. Measurement The demon measures the position of the particle.
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3. Feedback The gas is expands quasistatically and isothermally. Since this process is quasistatic,
the work extracted is equal to the change in free energy,

W =∆F =
1
β

ln
Z(X2)
Z(X1)

=
1
β

ln
X2

X1
, (1.14)

where X is the position of the partition, X1 being the initial position and the X2 being the
final position; Z(X ) is the partition function of the single molecule gas when the partition is
at X , and is proportional to X 1. If W (0) and W (1) denote the work done when the molecule
is found to the left and right respectively, we have

βW (0) = − ln(x); βW (1) = − ln(1− x) (1.15)

4. Removal of the partition The demon removes the partition quasistatically and the engine
returns to its initial state.

The average work extracted in one such cycle is given by

β〈W 〉= β
∑

r

P(r)W (r) = −x ln(x)− (1− x) ln(1− x). (1.16)

We note that when the partition is placed in the middle, i.e. x = 1/2, the amount of work
extracted is kB T ln 2.

1.3.1 Measurement errors

Table 1.1: States available
to the single particle SZE

q
r

r = 0 r = 1

q = 0 (0, 0) (1, 0)
q = 1 (0, 1) (1, 1)

In this section, we will spend some time analysing the case when the
measurement in Step 2 of the cycle is not perfect [5].

The magnitude of error is contained in the conditional probabilities
P(q|r)—the probability that the measurement outcome2 is q, when
the actual position of the molecule is r. In terms of conditional
probabilities, the error rate is e = P(0|1) = P(1|0).

After making the measurement, the state of the system has to be
described by the pair (r, q). For example, if the measurement yields
q = 1 in presence of errors, r may not be 1; the state r = 0 has
probability P(1|0) = e, and the state r = 1 has probability P(1|1) = 1−e.
Hence, after measurement the system occupies one of the four states in Table 1.1.

We assume that after the expansion, the partition moves to position x eq
0 = l eq

0 /L when q = 0, and
to x eq

1 = l eq
1 /L when q = 1. If the work from a particular configuration (r, q) of the system is

denoted by W (r,q), we have

βW (1,1) = log

�

x eq
1

x

�

; βW (1,0) = log

�

x eq
0

x

�

;

βW (0,1) = log

�

1− x eq
1

1− x

�

; βW (0,0) = log

�

1− x eq
0

1− x

�

. (1.17)

The average work extracted in the entire process is given by

β〈W 〉= −x log x − (1− x) log(1− x)

+ (1− e)[x log x eq
1 + (1− x) log

�

1− x eq
0

�

]

+ e[x log x eq
0 + (1− x) log

�

1− x eq
1

�

]. (1.18)

1Partition function for a classical ideal gas is given by Z(T, N , V ) = 1
N !

�

V
λ(T )

�N
, and X ∝ V .

2q = 0 means that the molecule is to the left, q = 1 means that the molecule is to the right
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Figure 1.1: Work output from a single particle Szilard engine with errors.

In order to determine x eq
0 and x eq

1 , 〈W 〉 is maximized by setting ∂ 〈W 〉/∂ x eq
0 = 0 and ∂ 〈W 〉/∂ x eq

1 =
0, which gives

x eq
0 =

x(1− e)
(1− e)x + (1− x)e

(1.19)

x eq
1 =

(1− x)(1− e)
(1− x)(1− e) + xe

. (1.20)

1.3.2 Multi-particle Szilard engine

It is possible to generalise the results in this section to the case of multiple particle with only
minimal effort.

We consider a box containing N molecules as working substance contained in a box of volume
V = AL. In the first step, the partition is placed at a position l which divides the box in ratio
x : 1− x with x = l/L. In the second step, the number of molecules to the left of the partition
are measured: let’s say that m molecules are found on the left and N −m molecules are found on
the right side of the partition. In the third step, the gas expands isothermally till the equilibrium
position x eq

m = l eq
m /L—determined by the force balance condition—is attained. In the final step,

the partition is removed and the engine is returned to its initial state.

For the average work done during one cycle of the engine, we invoke (2.13)

〈W 〉= −
1
β

N
∑

m=0

fm ln

�

fm

f ∗m

�

, (1.21)

where

fm =
Zm,N−m(l)

∑N
n=0 Zn,N−n(l)

, (1.22)

with Zm,N−m(X ) = Zm(X )ZN−m(L−X ), is interpreted as the probability that m molecules are found
on the left side of the partition after its insertion, and

f ∗m =
Zm,N−m(l eq

m )
∑N

n=0 Zn,N−n(l
eq
m )

(1.23)

is interpreted as the probability that m molecules are found on the left side of the partition when
it is inserted at l eq

m in the time backward process.
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Figure 1.2: Work output from a multi particle Szilard engine parametrised by number of particles.

In case of a system of classical particles, we have Zm(X ) = cX m/m! and

fm =
Zm(l)ZN−m(L − l)

∑

n Zn(l)ZN−m(L − l)

=
lm

m!
(L − l)N−m

(N −m)!

� N
∑

n=0

ln

n!
(L − l)N−n

(N − n)!

=
�

N
m

�

lm[L − l]N−m

LN

=
�

N
m

�

xm(1− x)N−m. (1.24)

Similarly if we let l eq
m = (m/N)L = αL, we get

f ∗m =
�

N
m

�

αm(1−α)N−m. (1.25)

Using these expressions for fm, and f ∗m in (1.21) leads us to the following relation for work
extracted

β〈W 〉= −
N
∑

m=0

�

N
m

�

xm(1− x)N−m ln

�

� x
α

�m�1− x
1−α

�N−m
�

. (1.26)

1.4 Landauer’s principle

The cycle involved in the operation of the Szilard engine seems to show us a process whose
sole outcome is the complete conversion of heat to work, in contradiction to the second law of
thermodynamics. As already noted, this contradiction is resolved by considering the combined
engine–demon system, and associating an energy cost to the demon’s actions. This energy
cost manifests itself in Landauer’s principle, which states that the erasure of an unknown bit of
information requires dissipation of at least kB T ln2 of energy.

In what follows, we shall consider the Szilard engine with a single particle in which the partition
is inserted symmetrically in the first step, for simplicity.

After the measurement in Step 2 of the Szilard engine cycle, the demon acquires one bit of
information: when the molecule is to the left of the barrier, the bit value is 0, and when the
molecule is to the right of the barrier, the bit value is 1. If the process is to be cyclic, the state of
the demon’s memory must be reset. Hence, the work per cycle of the Szilard engine is

Wtot =W +Weras ≥ −kB T ln2+ kB T ln 2= 0, (1.27)
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where we invoked Landauer’s principle to obtain a bound for the work done in bit erasure
Weras ≥ kB ln2.

Landauer’s principle can be illustrated if as a memory device we have Szilard’s box divided into
two equal volumes with the bit encoded as the half volume containing the molecule. Our task
is to reset the state of the memory device to 0. This can be achieved by first removing the
partition, which destroys the bit value, and then by inserting a new partition at the right end
and (isothermally) moving it to the middle of the box. The isothermal expansion of the single
molecule gas involves the amount of work

Weras = kB T

∫ V/2

V

pdV = kB T ln2. (1.28)

1.5 Outline of the project

Having looked at the links between the theory of information and thermodynamics which are
manifest in the Szilard engine and Landauer’s principle, we pursue this thread further, and look
at a completely quantum description of a multi-particle Szilard engine [3] in Chapter 2. The
quantum Szilard engine presents some intriguing differences from the classical case: insertion
of partition cannot be done without expenditure of work, and when there are two or more
particles, different particle statistics lead to dramatically different work outputs for bosons and
fermions.

In Chapter 3 we look at more general quantum thermodynamic cycles. We follow the devel-
opment of quantum thermodynamics in [6] and [7] and define the quantum analogues of
isothermal, adiabatic, isochoric, and isobaric processes. Using these quantum thermodynamic
processes, quantum versions of the Carnot, Otto, Brayton, and Diesel cycles are built and their
work output, efficiencies, and positive work conditions derived, when the working substance is a
single-mode radiation field in a cavity.

Finally, in Chapter 4 we look at a proof-of-concept, magnetically driven quantum heat engine
with a particle trapped in a cylindrical potential well as the working substance [4]. The
thermodynamic processes are driven by quasistatically modifying an external magnetic field,
which modifies the confinement length of the particle. In addition to the Carnot cycle, an
isoenergetic cycle is also described; work output and efficiencies are calculated for each of the
cycles and the results compared to the expressions obtained by more general considerations in
[6].
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2 Quantum Szilard Engine

The most primitive construction of a Szilard engine involves a single molecule of gas—a quantum
object as working substance and therefore needs a quantum description. In this chapter, we shall
look at the complete quantum analysis of a multi-particle Szilard engine that has been carried
out in [3]. Interestingly, we note that this came relatively recently in 2011, even though the
Szilard engine has been around for a hundred years.

2.1 Quantum first law of thermodynamics

For a system with single particle states |n〉 described by Ĥ |n〉= En |n〉, the internal energy of the
system is identified as the ensemble average of the Hamiltonian

U =
∑

n

PnEn, (2.1)

where Pn is the mean occupation number of the nth eigenstate. Taking the exterior derivative of
(2.1) gives us

dU =
∑

n

(EndPn + PndEn), (2.2)

which we identify as the quantum analogue of the first law: dU = dQ+ dW . As dQ = TdS and
S = kB

∑

n Pn ln Pn, we identify

dQ =
∑

n

EndPn and dW =
∑

n

PndEn. (2.3)

In an isothermal process the system is kept in equilibrium with a heat reservoir at temperature
T = 1/kBβ , and the occupation probabilities satisfy the canonical distribution

Pn =
e−βEn

Z(β)
, (2.4)

where Z is the partition function. If an external parameter X (on which En and Pn depend
smoothly) changes from X1 to X2, the work is obtained from the change in free energy

W =∆F = kB T

∫ X2

X1

∂ ln Z
∂ X

dX (2.5)

= kB T[ln Z(X2)− ln Z(X1)]. (2.6)

In the next section, we shall look at the work done in each of the steps of the thermodynamic
cycle of the Szilard engine.

2.2 Szilard engine cycle

1. Insertion of partition A wall is isothermally inserted at position l. The partition function when
the wall has been inserted but the measurement is not performed yet is Z(l) =

∑N
m=0 zm(l),
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where zm(l) = Zm(l)ZN−m(L− l) is the partition function for the case in which m particles are
on the left and N −m particles on the right. The amount of work expended in the insertion
is given by

Wins = kB T[ln Z(l)− ln Z(L)]. (2.7)

2. Measurement Measurement is performed without any expenditure of work.

3. Isothermal expansion Work due to the isothermal expansion when m particles are to the left
of the wall and N −m are to the right is given by

W (m)
ex p = kB T[ln zm(l

m
eq)− ln zm(l)], (2.8)

as the partition moves from the initial position l, to equilibrium position lm
eq. Equilibrium

position is determined by the force balance condition F ri ght + F le f t = 0. Work is averaged
over the number of particles m to give

Wex p =
N
∑

m=0

fmW (m)
ex p = kB T

N
∑

m=0

fm[ln zm(l
m
eq)− ln zm(l)] (2.9)

where fm = zm(l)/Z(l) is the probability of finding m particles on the left at measurement.

4. Removal of partition During the expansion process, the barrier height due to the wall is
considered to be large enough that the tunnelling time τt between two sides is much larger
than the operational time of the thermodynamic process τ. During wall removal however,
τt becomes comparable to τ for a certain barrier height X0; beyond this barrier height the
eigenstates are delocalised over both sides due to tunnelling. When the eigenstates are
delocalised, the partition function is given by Z(lm

eq) =
∑

n zn(lm
eq) rather than zm(lm

eq). The
work (when m particles are to the left) is then given by

W (m)
rem = kB T

�

∫ X0

X∞

∂ ln zm(lm
eq)

∂ X
dX +

∫ 0

X0

∂ ln Z(lm
eq)

∂ X
dX

�

(2.10)

For quasistatic processes, τ→∞ (X0, X∞→∞), and the first term above vanishes and

W (m)
rem = kB T

∫ 0

X0

∂ ln Z(lm
eq)

∂ X
dX = kB T[ln Z(L)− ln Z(lm

eq)] (2.11)

This work is averaged over all m to give

Wrem = kB T
N
∑

m=0

fm[ln Z(L)− ln Z(lm
eq)]. (2.12)

Combining contributions from all four steps of the engine cycle, the total work in a cycle is given
by

Wtot =Wins +Wex p +Wrem = −kB T
N
∑

m=0

fm ln

�

fm

f ∗m

�

(2.13)

where f ∗m = zm(lm
eq)/Z(l

m
eq) is identified with the probability of obtaining m particles on the left in

the time backward process when the partition is inserted at lm
eq.

2.3 Single particle quantum Szilard engine

We consider a single particle in an infinite square well of size L and we assume that the partition
is inserted at position l = L/2 for simplicity. Since the partition is inserted in the middle of
the well, f0 = f1 = 1/2. In this case, the partition moves to an end of the partition during
expansion, hence Z(lm

eq) = zm(lm
eq) and therefore f ∗0 = f ∗1 = 1. The total work done is obtained

from a straightforward application of (2.13)

Wtot = kB T ln2. (2.14)
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It is observed that the work done from the quantum version of the single particle Szilard engine
is identical to the work obtained from its classical counterpart.

In order to highlight differences between the quantum and the classical case, it is instructive to
look at each of the processes individually.

1. Work done in insertion of partition Wins = −∆+ kB T ln2 where ∆ = ln(z(L))/ ln(z(L/2)),
z(l) =

∑

n e−βEn(l) is the partition function, and En(l) = h2n2/(8Ml2) are eigenenergies with
h being Planck’s constant. In particular, we note the contrast from the classical case where
the partition is inserted without any expenditure of work.

2. No work is done during the measurement, same as the classical case.

3. Work done during expansion Wex p =
ln z(L)

ln z(L/2) =∆, which depends on the energy spectrum
En(l). In the classical case, the work done during expansion is kB T ln 2.

4. Work done in removal vanishes because lm
eq = L, same as the classical case.

If the insertion process were ignored, Wtot =∆ and the second law would be violated in the low
temperature limit as ∆� kB T .

2.4 Two particle quantum Szilard engine

In order to calculate the total work done, we look at each value of m in the sum of (2.13)
individually. We assume that the partition is inserted at position l = L/2 in the first step.
When m = 0,2, there are no particles on one of the sides of the wall and the force balance
condition leads to lm

eq = 0, L and therefore f ∗0 = f ∗1 = 1. When m= 1, the wall doesn’t move and
lm
eq = l = L/2 which gives us f1 = f ∗1 . Summing all contributions, we end up with

Wtot = −2kB T f0 ln f0 (2.15)

where we have used f0 = f2. We recall that

f0 =
z0(l)

z0(l) + z1(l) + z2(l)
, (2.16)

and note that z0(l) = z2(l) are the partition functions of two particles in a potential well of size
l, and z1(l) = Z(β)2 where Z(β) is the partition function of a single particle in a well of size l.
Unless we consider the high temperature limit when the degeneracies are washed out due to
thermal fluctuations, the case of bosons and fermions must be analysed separately as particle
statistics come into play. However before proceeding, we record that

Z(β)2 =

�

∑

n

e−βEn

�2

=
∑

n

e−2βEn + 2
∑

n<m

e−β(En+Em), (2.17)

and therefore
∑

n<m

e−β(En+Em) =
Z(β)2 − Z(2β)

2
. (2.18)

2.4.1 Two bosons

When the number of particles is only two, the parity requirements on the partition sum can be
satisfied with relative ease

z0 =
∑

n≤m

e−β(En+Em) =
∑

n

e−2βEn +
∑

n<m

e−β(En+Em)

= Z(2β) +
∑

n<m

e−β(En+Em)

=
Z(β)2 + Z(2β)

2
, (2.19)
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Figure 2.1: f0 as a function of T for bosons (solid curve) and fermions (dashed curve) and
classical particle (dash-dotted line). (a) Three possible ways in which two identical bosons as
assigned over two states. (b) Four possible ways in which two distinguishable particles are
assigned over two states. (Inset) Wtot/Wc as a function of temperature.

where in the last line we have used (2.18). f0 for bosons is

f0 =
Z(β)2 + Z(2β)

4Z(β)2 + 2Z(2β)
=

d + 1
4d + 1

(2.20)

where d = Z(β)2/Z(2β).

We note that Z(β)> Z(2β) and hence d = (Z(β)/Z(2β))Z(β)> Z(β). If the number of energy
levels is infinite, in the high temperature limit, we have Z(β)→∞ and d →∞. Therefore, we
conclude f0→ 1/4 as T →∞, which gives Wtot → kB ln2 in the high temperature limit.

If the single-particle ground state is non-degenerate, we have

d =
1+ 2e−β(E1−E0) + . . .
1+ 2e−2β(E1−E0) + . . .

, (2.21)

which gives us d → 1 as T → 0. Thus, in the low temperature limit, f0 attains a limiting value
f0→ 1/3, which gives Wtot → (2/3)kB T ln3.

2.4.2 Two fermions

We proceed in a manner similar to what we did for bosons. We start with calculating z0, the
partition function of two fermions in a potential well.

z0 =
∑

n<m

e−β(En+Em) =
Z(β)2 − Z(2β)

2
(2.22)

where we have used (2.18). From here, we can write the expression for f0 for fermions,

f0 =
Z(β)2 − Z(2β)

4Z(β)2 − 2Z(2β)
=

d − 1
4d − 1

. (2.23)

As in the previous section, if the number of states is infinite we obtain the high temperature
limit: f0→ 1/4 and Wex t → kB T ln2; and if the single-particle ground state is non-degenerate,
we have the low temperature limit: f0→ 1 and Wex t → 0, in stark contrast to bosons.
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Table 2.1: Work done in a two particle quantum Szilard engine with l = L/2 in the low and high
temperature limits in units of kB T .

Bosons Fermions

T → 0 (2/3) ln 3 0
T →∞ ln2 ln2
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3 Quantum Thermodynamic Cycles

We have already identified the quantum analogues of heat, work, and the first law of thermo-
dynamics. In this chapter we shall extend some common thermodynamic cycles to quantum
systems and then describe quantum analogues of classical heat engine cycles: Carnot, Otto,
Brayton, and Diesel. We derive work output, efficiency, and positive work condition (PWC) for
these quantum heat engine cycles and compare with their classical counterparts.

Finally, for an illustration of concepts developed, we shall look at quantum heat engines based
on a single-mode radiation field in a cavity.

3.1 Quantum thermodynamic processes

Before starting with the description of quantum thermodynamic processes, we stop to record a
fact that will make certain computations easier: the work done dW , heat exchanged dQ, and
therefore the change in internal energy dU , are invariant under a uniform shift of all energy
levels.

If we assume that all energy levels shift uniformly: E′n = En +δ, the first thing we note is that
that dE′n = dEn because δ is a constant. Next, we consider the occupation probabilities,

P ′n = e−β(En+δ)

�

∑

m

e−β(Em+δ)

�−1

= e−βEn

�

∑

m

e−βEm

�−1

= Pn, (3.1)

and observe that dP ′n = dPn. Finally, from the quantum analogues of heat, work (2.3); and the
first law (2.2), the result follows.

In particular we note that, assuming ground state energy to be zero has no effect on dU .

3.1.1 Isothermal process

When the working substance is in equilibrium with a heat bath, its temperature is well defined
and is equal to the temperature of the bath. Specifically, for a two-level system in equilibrium
with a bath, with states |g〉 and |e〉, and energy spacing ∆ = Ee − Eg , the occupation probabilities
Pg and Pe must satisfy the canonical distribution:

Pg =
e−βEg

Z(β)
; Pe =

e−βEe

Z(β)
, (3.2)

where Z(β) = e−βEg + e−βEe is the partition function of the two-level system. These relations lead
to

Pe

Pg
= e−β∆. (3.3)

Even when the working substance is not in equilibrium with a heat bath we can define an effective
temperature by inverting (3.3)

Te f f =
1

kBβe f f
=
∆

kB

�

ln
Pg

Pe

�−1

. (3.4)
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In particular, we note that the effective temperature is well defined for all two-level systems. For
more than two levels, the occupation probabilities must satisfy the canonical distribution for a
unique Te f f to be defined.

In a quantum isothermal process, the working substance is confined to a potential energy well,
kept in contact with a heat bath, and occupation probabilities Pn and energy levels En change
simultaneously, so that the occupation probabilities satisfy the canonical distribution (2.4) for a
fixed β at all times.

Internal energy in an isothermal process When the working substance is a classical ideal gas,
the internal energy remains invariant in an isothermal process. However, this classical re-
sult changes when the working substance is a quantum system. In particular, we note that
quantum isoenergetic process cannot be considered the quantum analogue of the isothermal
process.

The internal energy of a system is U(i) = 〈H〉 =
∑

n EnPn. In an isothermal expansion process,
all energy levels change in the same ratio En→ ζEn, n = 0,1,2, . . ., where ζ > 0 is the ratio of
energy levels. The internal energy of the system can be rewritten as

U(ζ) =
∑

n

ζEn

Z(ζ)
e−βζEn . (3.5)

We now consider the derivative of the internal energy with respect to ζ,

dU(ζ)
dζ

=
∑

n

En

Z(ζ)
(1− ζβEn)e

−βζEn + ζβ

�

∑

n

En

Z(ζ)
e−βζEn

�2

(3.6)

For two-level systems in particular, there is only one term in the sum (because we can assume
the ground state energy to be zero without loss of generality), and we have

dU(ζ)
dζ

=
Ee

Z(ζ)
e−βζEe

�

1−
ζβEe

Z(ζ)

�

, (3.7)

which is non-zero. Hence, the internal energy is not invariant in this isothermal process.

3.1.2 Isochoric process

In a quantum isochoric process no work is done while heat is exchanged between the working
substance and the heat bath. Energy spectrum remains fixed, while the occupation probabilities
change until the working substance reaches an equilibrium with the bath.

3.1.3 Adiabatic process

In a quantum adiabatic process, the time evolution of the system is controlled by slowly changing
parameters For such a Hamiltonian, transitions between different eigenstates |n〉 → |m〉 are
forbidden, and the occupation probabilities remain invariant.

From our earlier discussion dPn = 0 =⇒ dQ = 0. Hence, a quantum adiabatic process is
thermodynamic adiabatic. However the converse may not always be true: if a classical adiabatic
process proceeds very fast, the quantum adiabatic condition will not be satisfied and internal
excitations might occur.

3.1.4 Isobaric process

From classical thermodynamics, we know that dW =
∑

i Yidyi, where Yi are generalised forces
and yi are generalised displacements with

Yn =
dW
dyn

. (3.8)
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When the generalized displacement is chosen to be volume, the conjugate force is pressure
P = −dW/dV . Motivated by the definition of a generalized force in a classical system, we define
it for a quantum system by

F = −
dW
dL
= −

∑

n

Pn
dEn

dL
, (3.9)

with F and L being the generalized force–displacement conjugate pair. When L is a generalized
coordinate of the system (for example, the width of the potential well), we identify the conjugate
force as the pressure.

The quantum isobaric process is defined in the obvious way: the quantum analogue of pressure
must remain invariant during the process.

3.2 Carnot cycle

Just like its classical counterpart, the quantum Carnot cycle consists of two quantum isothermal
processes, and two quantum adiabatic processes (Figure 3.1). During isothermal processes, we
assume that the energy levels of the system change much slower than the relaxation time of the
system, and hence the system is always kept in equilibrium with the heat bath.

S

T

TH

TC

S(A) = S(B) S(C) = S(D)

A B

CD

Figure 3.1: Temperature–entropy diagram of a Carnot engine cycle.

3.2.1 Thermodynamic reversibility

We pause here to remark about the thermodynamic reversibility of the quantum Carnot cycle. In
order to ensure that the cycle is reversible, the following two conditions must be satisfied by the
quantum adiabatic process:

(1) After the quantum adiabatic process (B→ C), we can use an effective temperature TC to
characterize the working substance

(2) The effective temperature TC of the working substance, after the quantum adiabatic process
equals the temperature TC of the heat bath of the following isothermal process (C → D).

If either of the two conditions are not satisfied, a thermalisation process is inevitable before the
succeeding isothermal process starts, which renders the cycle irreversible. It can be shown [6]
that the these conditions are equivalent to the following two conditions

(a) All energy gaps are changed by the same ratio in the quantum adiabatic process

En(B)− Em(B)
En(C)− Em(C)

= λ=
En(A)− Em(A)
En(D)− Em(D)

. (3.10)

(b) The ratio of change in energy gaps in the adiabatic process must equal the ratio of the two
temperatures of the heat bath λ= TH/TC .
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It is easier to show the backward direction (a), (b) =⇒ (1), (2). Since the process B → C
is adiabatic, the occupation probabilities don’t change Pn(B) = Pn(C); and by hypothesis, we
have En(B) = λEn(C) [where we have chosen m = 0 and E0(B) = E0(C) = 0 without any loss of
generality (3.1)]:

Pn(B) =
e−βH En(B)

Z(βH)
=

e−βHλEn(C)

Z(λβH)

=
e−βC En(C)

Z(βC)
= Pn(C), (3.11)

where in the second line we used λ = TH/TC . Hence, we have shown that at the end of the
adiabatic process, the occupation probabilities satisfy a canonical distribution for temperature
TC ; the effective temperature of the working substance at C is well defined and it is equal to the
temperature of the heat sink.

For the forward direction (1), (2) =⇒ (a), (b), we assume that the working substance is in
equilibrium with the heat bath at TH at the instant before the adiabatic process B → C starts,
and the occupation probabilities satisfy

Pn(B) =
e−βH En(B)

Z(βH)
. (3.12)

At the end of the adiabatic process the working substance is characterised by the effective
temperature TC . Since the occupation probabilities remain unchanged during the process we
have

Pn(B)
Pm(B)

=
e−βH En(B)

e−βH Em(B)
=

Pn(C)
Pm(C)

=
e−βC En(B)

e−βC Em(B)
, (3.13)

which implies

En(C)− Em(C) =
TC

TH
[En(B)− Em(B)], (3.14)

which is a combination of conditions (1) and (2).

3.2.2 Work and efficiency

Since the isothermal process is carried out reversibly, we can use dQ = TdS to calculate the
amount of heat exchanged. The process A→ B is a quantum isothermal expansion process in
which heat is absorbed from the reservoir, hence dQ = THdS > 0 and

QQI T
in = TH[S(B)− S(A)]> 0 (3.15)

The process C → D is a quantum isothermal compression in which heat is rejected to the reservoir,
hence −dQ = −TCdS > 0 and

QQI T
out = TC[S(C)− S(D)]> 0 (3.16)

The entropies can be calculated from the temperature derivative of the free energy F = −kB T ln Z:
S(i) = −∂ F/∂ T .

The work done per cycle is given by

WC =QQI T
in −QQI T

out = (TH − TC)[S(B)− S(A)], (3.17)

where we have used the relations S(B) = S(C) and S(A) = S(D), because the occupation proba-
bilities and therefore the entropies remain invariant during adiabatic processes. Consequently,
the efficiency of the quantum Carnot cycle is

ηC =
WC

QQI T
in

= 1−
TC

TH
(3.18)

= 1−
En(C)− Em(C)
En(B)− Em(B)

(3.19)
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From the above relation, the positive work condition is TC < TH .

We note that the efficiency derived in (3.18) is identical to what we obtain for a classical Carnot
cycle. In fact, the technique employed to derive the efficiency here is formally very similar to
what is done for a classical Carnot cycle in Appendix A.

3.3 Otto cycle

The quantum Otto engine cycle consists of two quantum isochoric and two quantum adiabatic
processes (Figure 3.2).

Figure 3.2: Temperature–entropy diagram of a Otto engine cycle.

3.3.1 Work and efficiency

In the isochoric process A→ B, no work is done, but heat is absorbed

QQIC
in =

∑

n

∫ B

A

EndPn =
∑

n

EH
n [Pn(B)− Pn(A)]. (3.20)

Similarly, the heat released during the quantum isochoric cooling process 3→ 4, is

QQIC
out =

∑

n

∫ D

C

EndPn =
∑

n

EC
n [Pn(C)− Pn(D)] (3.21)

We cannot use dQ = TdS because the working substance and heat bath are not in thermal
equilibrium during the isochoric process

In order to ensure thermodynamic reversibility of the cycle, we must require that all energy gaps
change in the same ratio in the quantum adiabatic process: EH

n − EH
m = α[E

C
n − EC

m]. Occupation
probabilities: Pn(B) = Pn(C) and Pn(A) = Pn(D) and entropies: S(B) = S(C) and S(A) = S(D)
remain invariant during the adiabatic process.

Net work during one quantum Otto cycle is the difference between heat absorbed and heat
rejected

WO =QQIC
in −QQIC

out =
∑

n

(EH
n − EC

n )[Pn(B)− Pn(A)] (3.22)

Consequently, the operational efficiency of the Otto cycle is given by

ηO =
WO

QQIC
in

= 1−
EC

n − EC
m

EH
n − EH

m

= 1−
1
α

(3.23)

3.3.2 Positive work condition

We first consider the case when the working substance has only two energy levels. The work
done is given by

WO = (E
H
e − E L

e )(Pe(B)− Pe(A))

= (EH
e − E L

e )(P
H
e − P L

e ) (3.24)
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Contribution due to the ground state vanishes because we take E L
g = EH

g = 0. As T (A) = TC and
T (B) = TH , the occupation probabilities obey the canonical distribution:

PH
e =

e−βH∆H

1+ e−βH∆H
; P L

e =
e−βL∆L

1+ e−βL∆L
(3.25)

For positive work, we take

WO = (E
H
e − E L

e )(P
H
e − P L

e )> 0

=⇒ (PH
e − P L

e )> 0

=⇒
�

e−βH∆H

1+ e−βH∆H
−

e−βL∆L

1+ e−βL∆L

�

> 0

=⇒ − βH∆H + βL∆L > 0

=⇒ TL
∆L

∆H
< TH

=⇒ αTL < TH (3.26)

For a multilevel Otto engine in which all energy levels change in the same ratio, the same
positive work condition follows from a very similar computation, where we use the condition
∆n

L = α∆
n
H for all n. We note that the PWC for an Otto cycle (αTL < TH) is stronger than the

PWC for a Carnot cycle (TL < TH).

3.4 Single-mode radiation field in cavity

In this section, we shall look at illustrations of the Carnot and Otto cycles based on a single-mode
radiation field in a cavity of length L and cross section area A, which supports a single-mode of
field ω= sπc/L, where s is an integer and c the speed of light. The Hamiltonian reads

Ĥ =
∑

n

�

n+
1
2

�

~ω |n〉〈n| , (3.27)

where |n〉 is the Fock state of the radiation field. In heat engines based on single-mode radiation,
the quantum thermodynamic processes are controlled by (quasistatically and reversibly) varying
the length of the cavity L, which in turn changes the frequency of allowed modes ω. In what
follows, we shall use ω and L as stand-ins for each other.

Energy spectrum of the system is En = ~ω(n+1/2) and the partition function is evaluated

Z(β ,ω) =
∑

n

e−βEn = e−β~ω/2
∑

n

e−nβ~ω

=
e−β~ω/2

1− eβ~ω
=
�

2sinh
�

β~ω
2

��−1

. (3.28)

The ensemble average energy can be evaluated with (∂ ln Z/∂ β):

U(β ,ω) =
∂ log Z
∂ β

=
1
Z
∂ Z
∂ β

=
1
Z

�~ω
2

coth(β~ω/2)
2 sinh(β~ω/2)

�

=
~ω
2

coth
�

β~ω
2

�

(3.29)

=
�

1
eβ~ω − 1

+
1
2

�

~ω (3.30)
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and the entropy with the negative of the T derivative of the free energy F = −kB T ln Z

S(β ,ω(i)) = kB
∂ T ln Z
∂ T

= kB

�

ln Z + T
∂ ln Z
∂ β

∂ β

∂ T

�

= kB(ln Z − βU) (3.31)

= −kB ln
�

2 sinh
�

β~ω(i)
2

��

− kB
β~ω(i)

2
coth

�

β~ω(i)
2

�

. (3.32)

Before calculating the quantum analogue of pressure (radiation force), we note that the adiabatic
(isoentropic) condition for this system is βω= constant or equivalently

T L = constant. (3.33)

Radiation force We begin by noting that dEn/dL = −En(L)/L, and calculate the radiation force
F as a function of temperature and cavity length from (3.9). For this calculation we assume
that the system is in equilibrium with a heat bath at temperature T = 1/kBβ and the occupation
probabilities satisfy the canonical distribution,

F = −
∑

n

e−βEn(L)

Z(L)
dEn(L)

dL
=

1
LZ(L)

∑

n

e−βEn(L)En(L)

=
1
L

�

−
1

Z(L)
∂ Z(L)
∂ β

�

=
~sπc

L2

�

1
eβ~sπc/L − 1

+
1
2

�

(3.34)

=
1
L

�

1
eβ~ω − 1

+
1
2

�

~ω. (3.35)

We identify (3.34) with the equation of state for this system. In particular, for an isobaric process,
the temperature must be varied in the following very subtle way:

β =
L

~sπc
ln

�

2F L2 + ~sπc
2F L2 − ~sπc

�

, (3.36)

from which we derive another equivalent condition for the adiabatic process

F L2 = constant. (3.37)

3.4.1 Carnot cycle

Work done in a Carnot cycle can be calculated from (3.17)

WC = (TH − TC)[S(B)− S(A)], (3.38)

where S(B) and S(C) depend on the size of the cavity L(i) = sπc/ω(i), and are calculated from
(3.32).

3.4.2 Otto cycle

Work done in the Otto cycle is calculated from (3.22)

W HO
O =

∑

n

(EH
n − EC

n )(P
H
n − PC

n )

= ~(ωH −ωC)
∑

n

�

n+
1
2

�

(PH
n − PC

n )

= ~(ωH −ωC)(〈n〉
H − 〈n〉C), (3.39)

where 〈n〉i = [eβ~ω(i) − 1]−1 is the mean photon number at a particular stage in the cycle.
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Figure 3.3: Force-displacement diagram of a Brayton cycle. A→ B represents isobaric expansion
with a constant force; B→ C represents an adiabatic expansion with constant entropy; C → D
represents an isobaric compression with a constant force; D→ A is another adiabatic compression
with constant entropy

3.5 Brayton cycle

Having looked at the thermodynamics of the single-mode radiation, and deriving the quan-
tum equivalent of pressure in the system we shall look at the quantum Brayton cycle in this
section.

Brayton cycle is illustrated in Figure 3.3. We note that the quantum adiabatic processes in the
cycle must satisfy these extra conditions to ensure reversibility:

1. All energy level spacings of the working substance change in the same ratio

2. This ratio is equal to the ratio of temperatures of the two heat baths just before and after
the adiabatic process

These conditions are very similar to the ones we needed for ensuring the reversibility of the
Carnot cycle; and are satisfied by the single-mode radiation.

3.5.1 Work and efficiency

We calculate the work done in a Brayton cycle based on single-mode radiation. Heat absorbed in
the isobaric expansion process A→ B is given by

QA→B =

∫ B

A

�

∑

n

En(L)
dPn(L)

dL

�

d L

= [U(LB)− U(LA)] +

∫ B

A

F(L)d L

= [F(LB)LB − F(LA)LA] + F1(LB − LA)

= 2F1(LB − LA), (3.40)

where we have used U(L) = LF(L) due to (3.34). Similarly, heat released in the isobaric
compression process C → D is

QC→D = 2F0(LC − LD). (3.41)

Since no heat is exchanged in the adiabatic processes, work extracted during the cycle is

W =QA→B −QC→D

= 2[F1(LB − LA)− F0(LC − LD)], (3.42)

and the efficiency is given by

ηB = 1−
F0(LC − LD)
F1(LB − LA)

. (3.43)
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Due to the adiabatic condition (3.37), we have F1/F0 = (LC/LB)2 = (LD/LA)2, which can be used
to simplify the efficiency to

ηB = 1−
�

F0

F1

�1/2

. (3.44)

Positive work condition deduced from the above expression is F0 < F1.

3.6 Diesel cycle

The Diesel cycle is illustrated in Figure 3.4; it consists of an isobaric, two adiabatic, and an
isochoric process. As before, in order to ensure reversibility, all energy-level spacings must
change in the same ratio in the adiabatic processes [6].

Figure 3.4: Force-displacement diagram of a Diesel engine cycle. A→ B represents isobaric
expansion with a constant force; B→ C represents an adiabatic expansion with constant entropy;
C → D represents an isochoric compression with constant volume; D→ A is another adiabatic
compression with constant entropy.

3.6.1 Work and efficiency

In order to calculate the work and efficiency, we employ the now familiar standard procedure to
calculate heat absorbed and rejected during the cycle. Heat is absorbed in the isobaric process
A→ B, and it is the same as in (3.40)

QA→B = 2F1(LB − LA). (3.45)

Heat rejected in the isochoric process C → D equals the change in internal energy

QC→D = U(C)− U(D)

= L1(FC − FD), (3.46)

where we have used F L = U due to (3.30), and LC = LD = L1to go to the second step. Work
done is the difference between heat absorbed and heat rejected:

WD = 2F1(LB − LA)− L1(FC − FD)

= F1 L1

�

2
�

LB

L1
−

LA

L1

�

−
�

FC

F1
−

FD

F1

��

= F1 L1(rE − rC)[2(rE + rC)− 1], (3.47)

where we have defined the expansion coefficient rE = LB/L1, the compression coefficient
rC = LA/L1, and used the adiabatic condition F L2 = constant. The efficiency is given by

ηD = 1−
1
2
(rE − rC). (3.48)

Positive work condition deduced from the above expression is 2+ rC > rE .
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4 Magnetically Driven Quantum Heat Engine

In this chapter we shall look at a proof-of-concept quantum heat engine based on a quantum dot
and driven by an external magnetic field [4].

4.1 Single particle spectrum in a cylindrical well

As working substance, we consider a single particle confined in a cylindrical potential of the
form

Vdot(x , y) =
1
2

m∗ωd(x
2 + y2), (4.1)

where m∗ is the effective mass of the particle. In addition to this, we apply a traverse magnetic
field B= Bẑ for additional confinement. This field is generated by a vector potential, for which
we adopt the symmetric gauge

A=
B
2
(−y x̂ + x ŷ) (4.2)

The Hamiltonian for a particle in geometric confinement Vdot and vector potential A has the
form

Ĥ =
1

2m∗

��

px −
eB y

2

�

+
�

py +
eBx

2

��

+ Vdot(x , y), (4.3)

and solving the eigenvalue equation Ĥ |ψ〉 = E |ψ〉 gives the following energy spectrum [8]:

Enρ ,m = ~Ω[2nρ + |m|+ 1] +m
~ωB

2
, (4.4)

which are energies corresponding to effective Landau levels
�

�nρ, m
�

, where nρ = 0,1,2, . . . and
m = 0,±1,±2, . . . are the radial and azimuthal quantum numbers respectively, ωB = eB/m∗ is the
cyclotron frequency, and we call Ω= [ω2

d +ω
2
B/4]

1/2 the effective frequency. We note that the
energy eigenfunctions are associated Laguerre polynomials [8]

¬

r
�

�

�ψnρ ,m

¶

∼ e−ρ
2/2le,B L|m|nρ

�

ρ2/l2
e,B

�

. (4.5)

Effective Landau radius is defined as

le,B =
� ~

m∗Ω

�1/2

, (4.6)

is the characteristic length of the system, and has contributions from the geometric confine-
ment ld = [~/m∗ωd]1/2 and confinement due to the magnetic field lB = [~/m∗ωB]1/2:

le,B =

�

1

l4
d

+
1

4l4
B

�−1/4

. (4.7)

4.2 Quantum dot thermodynamics

Before going on to look at the heat engine cycles, we pause to record some thermodynamic facts
about the system in question. We shall first evaluate the partition function for a single particle,
and then derive expressions for entropy and ensemble average energy.
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Figure 4.1: Single particle energy spectrum as a function of applied magnetic field.

4.2.1 Single particle partition function

For calculating the partition function, it is convenient to parametrize the energy in terms of
quantum numbers n± = 0, 1,2, . . . such that

n± =
1
2
[2nρ + |m| ±m] (4.8)

and 2nρ + |m|= n+ + n− and m= n− − n+, in terms of which the energy is written

En = ~Ω[2nρ + |m|+ 1] +m
~ωB

2

= ~
h

Ω+
ωB

2

i

n+ + ~
h

Ω−
ωB

2

i

n− + ~Ω

= ~ω+
�

n+ +
1
2

�

+ ~ω−
�

n− +
1
2

�

= E(n+) + E(n−), (4.9)

where we identify ω± = Ω±ωB/2.

It is now easy to carry out the partition sum,

Z(β) =
∑

n+

e−βE(n+)
∑

n−

e−βE(n−)

=

�

eβ~ω+/2
∑

n+

e−n+β~ω+

��

eβ~ω−/2
∑

n−

e−n−β~ω−

�

=
�

2 sinh
�

β~ω+
2

��−1�

2sinh
�

β~ω−
2

��−1

. (4.10)

4.2.2 Ensemble average energy and entropy

The ensemble average energy is calculated with U = −∂ ln Z/∂ β

U =
~ω+

2
coth

�

β~ω+
2

�

+
~ω−

2
coth

�

β~ω−
2

�

. (4.11)

And the entropy is given by

S
kB
= −

∑

n

Pn ln Pn

= −
∑

n

e−βEn

Z(β)
[ln e−βEn − ln Z(β)]

= βU − ln Z(β), (4.12)

where we used the expression of ensemble average energy to simplify to the last step.
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4.3 Isoenergetic cycle

A new thermodynamic cycle composed of two isoentropic (adiabatic) and two isoenergetic
processes is introduced in [4] and referred to as the isoenergetic cycle (Figure 4.2).

4.3.1 Isoentropic processes

In an isoentropic process, the occupation probabilities remain unchanged and the entropy
remains constant.

Work done by a changing magnetic field is related to the magnetization M = −∂ U/∂ B, by
dW = −MdB. If the magnetic field strength changes from Bδ to Bγ, the total work done is
obtained as

Wδ→γ =

∫ Bγ

Bδ

∂ U
∂ B

dB =

∫ Bγ

Bδ

∑

n

Pn
dEn(B)

dB
dB

=
∑

n

Pn[En(Bγ)− En(Bδ)] (4.13)

The same result was derived in [6] for isoentropic processes directly, by identifying dW =
∑

n PndEn in the quantum version of the first law.

4.3.2 Isoenergetic processes

An isoenergetic process operates under the condition dU = 0, hence in a process δ → γ, the
occupation probabilities and energy levels must change simultaneously to satisfy

∑

n

En(Bδ)Pn(Bδ) =
∑

n

En(B)Pn(B) =
∑

n

En(Bγ)Pn(Bγ), (4.14)

for every B ∈ [Bδ, Bγ]. However, this relation is not sufficient to uniquely determine Pn(B) for
every instant of the process. An exception to this is when the energy scale of the process is such
that only transitions possible are between adjacent states.

External magnetic field is in the ẑ direction, therefore azimuthal symmetry of the system remains
intact when the magnetic field is changed, and the z-component of angular momentum is
conserved. As a result, the azimuthal quantum number doesn’t change and we have the selection
rule ∆m = 0, for allowed transitions. If the system starts in the ground state (0,0), the only
adjacent allowed state is (1, 0). As a result, we have an effective two state system.

In the transition 1→ 2 as the magnetic flux density changes from Bδ to Bγ, we use (4.14) and
the normalization condition P2(B) = 1− P1(B) to get for every B ∈ [Bδ, Bγ]

E1(B)P1(B) + E2(B)P2(B) = E1(Bδ)P1(Bδ) + E2(Bδ)P2(Bδ)

=⇒ P1(B) =
E2(Bδ)− E2(B)
E1(B)− E2(B)

+
E1(Bδ)− E2(Bδ)
E1(B)− E2(B)

P1(Bδ). (4.15)

Heat exchanged during the process is,

Q1→2 =

∫ B2

B1

�

P1(B)
dE1

dB
+ P2(B)

dE2

dB

�

dB

=

∫ B2

B1

�

P1
d(E1 − E2)

dB
+

dE2

dB

�

dB, (4.16)

which upon substituting (4.15) and an integration by parts, simplifies to

Q1→2 = {E2(B1) + [E1(B1)− E2(B1)]P1(B1)} ln
�

E1(B2)− E2(B2)
E1(B1)− E2(B1)

�

. (4.17)
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Figure 4.2: Isoenergetic cycle in the effective two state system.

4.3.3 Isoenergetic cycle in the effective two state system

We consider a cycle that starts in the ground state with P1(B1) = 1.

1. Isoenergetic expansion lB1
→ lB2

with α1 = lB2
/lB1

> 0. We assume that this process corre-
sponds to maximal expansion, and the system ends up in the state (1,0): P1(B2) = 0 and
P2(B2) = 1. Due to the conservation of energy E1(B1) = E2(B2), we have

~ωd

�

1+
l2
d

2l2
B1

�1/2

= 3~ωd

�

1+
l2
B1

l2
B2

l2
d

2l2
B1

�1/2

=⇒ 1+
l2
d

2l2
B1

= 9

�

1+
l2
d

2α4
1l2

B1

�

=⇒ 1+ N2
Φ1
= 9

�

1+
N2
Φ1

α4
1

�

, (4.18)

where we have identified NΦ1
= Φ1/Φ0 where Φ0 = h/2e is the flux quantum, and Φ1 =

B1(πl2
d) is the magnetic flux through the quantum dot. Writing B1 in terms of lB1

and
substituting gives NΦ1

= l2
d/2l2

B1
. We note that

α1 =
(3NΦ1

)1/2

(N2
Φ1
− 8)1/4

, (4.19)

has physically meaningful values when NΦ1
> 81/2; fixing a lower bound for the magnetic

field B1. This constraint on the magnetic field is a result of requiring maximal expansion
(0, 0)→ (1, 0), in this step.

From (4.17), we get the expression for heat exchanged during the first stage

Q1→2 = E1(B1) ln

�

E2(B1)− E1(B1)
E2(α−2

1 B1)− E1(α−2
1 B1)

�

, (4.20)

and the work done W1→2 = −Q1→2.

2. Isoentropic expansion lB2
→ lB3

, α = lB3
/lB2

> 1. The expansion parameter α can be chosen
arbitrarily. Work done in this process due to (4.13) is

W2→3 = P2(B2)[E2(B3)− E2(B2)]

= 3~ωd

 

�

1+
N2
Φ1

(α1α)4

�1/2

−

�

1+
N2
Φ1

α4
1

�1/2!

. (4.21)
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3. Isoenergetic compression The Landau radius is decreased lB3
→ lB4

with α3 = lB4
/lB3

. Like the
isoenergetic expansion, we assume that this process corresponds to maximal compression:
P2(B3) = P1(B4) = 1. Maximal compression and the condition for energy conservation gives

~ωd

�

1+
l2
d

2l2
B4

�1/2

= 3~ωd

�

1+
l2
d

2l2
B3

�1/2

=⇒ ~ωd

�

1+
N2
Φ1

(α1α3α)4

�1/2

= 3~ωd

�

1+
N2
Φ1

(α1α)4

�1/2

, (4.22)

where we used the relations lB3
= αlB2

= α(α1lB1
), and lB4

= α3lB3
= α3(αα1lB1

). In particular,
(4.22) fixes a value for the compression coefficient

α3 =
N1/2
Φ1

[8(α1α)4 + 9N2
Φ1
]1/4

. (4.23)

Again, the value of compression coefficient is fixed because we require maximal compression
(1, 0)→ (0, 0), in this step. Heat exchanged during this process is given by (4.17)

Q3→4 = E2(B3) ln
�

E1(B4)− E2(B4)
E1(B3)− E2(B3)

�

, (4.24)

where we use lB = [~/m∗ωB]
1/2 = [~/eB]1/2 and the relations between lBi

, i = 1,2,3,4 in
terms of the expansion/compression coefficients to get

B3 =
B1

(αα1)2
; B4 =

B1

(αα1α3)2
. (4.25)

The work performed is W3→4 = −Q3→4.

4. Isoentropic compression This is the last step of the cycle which returns the system to the initial
state. The Landau radius is reduced lB4

→ lB1
. The work done in this step is obtained from

(4.13).

W4→1 = P1[E1(B1)− E1(B4)]

= ~ωd

 

[1+ N2
Φ1
]1/2 −

�

1+
N2
Φ1

(αα1α3)4

�1/2!

(4.26)

= 3~ωd
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1+
N2
Φ1

α4

�1/2

−

�

1+
N2
Φ1

(α1α)4

�1/2!

= −W2→3, (4.27)

where in the second step, we used the relations in (4.18) and (4.22), and in the third step
we use (4.21). Hence the net work during the isoentropic process cancels W2→3 +W4→1 = 0.

4.3.4 Efficiency

We invoke (4.4) to write explicit expressions for E1(B) and E2(B):

E1(B) = ~Ω= ~ωd

�

1+
ω2

B

4ω4
d

�1/2

= ~ωd

�

1+

�

l2
d

2l2
B

�2�1/2

= ~ωd

�

1+ N2
ΦB

�1/2
(4.28)

and similarly,

E2(B) = 3~ωd

�

1+ N2
ΦB

�1/2
. (4.29)
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We also note that

NΦ2
=

NΦ1

α2
1

; NΦ3
=

NΦ1

(αα1)2
; NΦ4

=
NΦ1

(αα1α3)2
, (4.30)

and define

Θ(α) =

�

1+
N2
Φ1

α4

�1/2

, (4.31)

in terms of which we write the energies are

E1(B1) = ~ωdΘ(1); E1(B2) = ~ωdΘ(α1); (4.32)

E1(B3) = ~ωdΘ(αα1); E1(B4) = ~ωdΘ(αα1α3); (4.33)

E2(B1) = 3~ωdΘ(1); E2(B2) = 3~ωdΘ(α1); (4.34)

E2(B3) = 3~ωdΘ(αα1); E2(B4) = 3~ωdΘ(αα1α3). (4.35)

So that the expressions for heat exchange are

Q1→2 = E1(B1) ln
�

E2(B1)− E1(B1)
E2(B2)− E1(B2)

�

= ~ωdΘ(1) ln
�

Θ(1)
Θ(α1)

�

(4.36)

and

Q3→4 = E2(B3) ln

�

E2(B3)− E1(B3)
E2(B4)− E1(B4)

�

= 3~ωdΘ(αα1) ln
�

Θ(αα1)
Θ(αα1α3)

�

(4.37)

Efficiency of the cycle is given by the ratio

η(NΦ1
,α) = 1−

�

�

�

�

Q3→4

Q1→2

�

�

�

�

= 1− 3
Θ(αα1)
Θ(1)

ln
�

Θ(αα1α3)
�

Θ(αα1)
�

ln
�

Θ(1)
�

Θ(α1)
� . (4.38)

When the field strength is very large NΦ1
� 1, the efficiency tends to the asymptotic limit

η→ 1−
1
α2

. (4.39)
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Figure 4.3: Efficiency and work output for the isoenergetic cycle parametrised by magnetic flux.
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4.4 Carnot cycle

The Carnot cycle consists of two isoentropic and two isothermal processes. During isothermal
processes, the system is kept in equilibrium with a heat bath at a fixed temperature, and the
occupation probabilities Pn satisfy the canonical distribution.

1. Isothermal expansion while in equilibrium with a heat bath at temperature TH = 1/kBβH .

2. Isoentropic expansion in which no heat is exchanged with the environment.

3. Isothermal compression while in equilibrium with a heat sink at temperature TC = 1/kBβC .

4. Isoentropic compression to reach the initial state.

4.4.1 Isothermal processes

During the isothermal process δ→ γ at temperature T = 1/kBβ , the heat exchanged is

Qδ→γ =

∫ γ

δ

∑

n

En(B)
dPn(B)

dB
dB

=

�

∑

n

Pn(B)En(B)

�Bγ

Bδ

−
∫ γ

δ

∑

n

dEn

dB
Pn(B)dB

= [U(Bγ)− U(Bδ)] +

∫ γ

δ

1
β

d ln Z(B,β)
dB

dB

= [U(Bγ)− U(Bδ)] +
1
β

ln

�

Z(Bγ,β)

Z(Bδ,β)

�

, (4.40)

where we used the following fact

d ln Z(B,β)
dB

=
1

Z(B,β)
d

dB

∑

n

e−βEn

=
∑

n

−β
e−βEn

Z(B,β)
dEn

dB
= −β

∑

n

Pn(B)
dEn

dB
. (4.41)

Hence we have the following expressions of heat absorbed and rejected during the isothermal
processes

Q1→2 = U(B2)− U(B1) +
1
βH

ln
�

Z(B2,βH)
Z(B1,βH)

�

, (4.42)

Q3→4 = U(B4)− U(B3) +
1
βC

ln
�

Z(B4,βC)
Z(B3,βC)

�

. (4.43)

4.4.2 Isoentropic processes

The isoentropic condition ∆S = 0, imposes bounds on the strength of the magnetic field and we
have

∆S2→3 = 0= S(B3,βC)− S(B2,βH)

= [βC U(βC , B3) + ln Z(B3,βC)]− [βH U(βH , B2) + ln Z(B2,βH)] (4.44)

∆S4→1 = 0= S(B1,βH)− S(B4,βC)

= [βH U(βH , B1) + ln Z(B1,βH)]− [βC U(βC , B4) + ln Z(B4,βC)] (4.45)
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Combining the two expressions in (4.44) and (4.45) leads to

βC[U(B3,βC)− U(B4,βC)] + ln

�

Z(B3,βC)
Z(B4,βC)

�

= βH[U(B2,βH)− U(B1,βH)] + ln
�

Z(B2,βH)
Z(B1,βH)

�

=⇒ −
Q3→4

βH
=

Q1→2

βC

=⇒
Q3→4

Q1→2
= −

βH

βC
, (4.46)

where we used (4.42) and (4.43) to identify the quantities in the above equations as the heat
absorbed and rejected during isothermal cycles.

4.4.3 Work and efficiency

Work output in the Carnot cycle is simply,

W =Q1→2 −Q3→4

=
�

1−
Q3→4

Q1→2

�

Q1→2

=
�

1−
TC

TH

��

U(B2)− U(B1) +
1
βH

ln
�

Z(B2,βH)
Z(B1,βH)

��

, (4.47)

where in the second step we used (4.46), which we also use to write the efficiency of the Carnot
cycle as

η= 1−
�

�

�

�

Q3→4

Q1→2

�

�

�

�

= 1−
TC

TH
, (4.48)

which is identical to the efficiency of the classical Carnot cycle, and consistent with what was
derived in the previous chapter with more general considerations.
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5 Conclusion

A very large part of this project was dedicated to studying thermodynamic cycles in the quantum
world, and comparing their properties to their classical counterparts. We started with a quantum
description of the Szilard engine, which despite having work output identical to the classical
cycle, showed some very dramatic departures from classical behaviour. In particular, the non-zero
work required in the insertion of the barrier, and the starkly different work outputs for bosons
and fermions were noted to be manifestly quantum effects.

In the following chapter, the quantum analogues of several thermodynamic processes were
described, and the quantum versions of common classical heat engine cycles built. Derivation of
operational efficiencies and work output were done with extremely general considerations in the
spirit of classical thermodynamics; the quantum nature of the working substances was abstracted
away and assumed to be contained in the partition function. Hence, it is not surprising that
the efficiencies of quantum heat engine cycles were identical to their classical counterparts. In
particular, it was observed that the efficiency and the positive work condition of the quantum
Carnot cycle depends on only the temperatures of the reservoirs between which the engine
operates, and not on any details of the working substance.

The penultimate chapter describes a physically realizable quantum heat engine in the context
of a quantum dot. An isoenergetic cycle was described for an effective two level system and
exact analytic expressions were derived for how the magnetic flux density must be changed in
each step of the cycle. In the Carnot cycle based on the quantum dot, the classical efficiency was
recovered, pointing to the consistency of the framework presented in [6].

5.1 Future work

In this report, the thermodynamic cycles were studied in the context of two physical systems:
single-mode radiation field in a cavity, and a magnetically controlled particle in a cylindrical
potential well. For future work, I intend to study alternative thermodynamic cycles based on
different quantum systems. In particular, I will study the magnetostrain driven quantum heat
engine based on a graphene flake as presented in [9].
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A Classical Thermodynamic Cycles

This appendix presents a summary of the classical versions of the Otto and Carnot cycles.

A.1 Otto cycle

The classical Otto cycle consists of six strokes (Figure A.1).

V

P

V1V2

0 1

2

3

4

Figure A.1: Classical Otto cycle.

0→ 1 Intake stroke. We model this process by a quasistatic isobaric process. The volume of
the chamber goes from zero to V1 and the working substance is is pushed into the engine
according to the equation of state P0V = nRT1, where P0 is the atmospheric pressure, n is
the number of moles of working substance, and T1 is the ambient temperature.

1→ 2 Compression stroke is modelled by a quasistatic adiabatic compression process. The
temperature rises from T1 to T2 according to equation

T1V γ−1
1 = T2V γ−1

2 , (A.1)

where γ= CP/CV .

2→ 3 Combustion During combustion, the piston remains almost stationary, and the temper-
ature increases further. We model this by a quasistatic isochoric process, in which the
temperature increase is brought about absorption of heat QH from a series of external high
temperature reservoirs whose temperatures range from T2 to T3.

3→ 4 Power stroke is approximated by an adiabatic expansion that leads to a drop in tempera-
ture from T3 to T4, according to the equation

T3V γ−1
2 = T4V γ−1

1 , (A.2)

4→ 1 Exhaust is an quasistatic isochoric drop in temperature and pressure of n moles of gas
brought about by a series of heat reservoirs whose temperatures range from T4 to T1, where
T1 is the ambient temperature.
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1→ 0 Exhaust stroke Represents an isobaric process at atmospheric pressure in which the gas is
ejected from the chamber, and its volume goes from V1 to zero.

A.1.1 Efficiency

The isobaric processes 0→ 1 and 1→ 0 cancel each other and need not be considered. The work
done in the cycle is the difference between QH the heat absorbed at high temperatures from
2→ 3, and QL the heat rejected at lower temperatures from 4→ 1.

Heat absorbed in the isochoric process 2→ 3 is given

|Q2→3|=
∫ 3

2

CV dT = CV (T3 − T2), (A.3)

and the heat rejected in the process 4→ 1 is

|Q4→1|=
∫ 1

4

CV dT = CV (T4 − T1). (A.4)

This leads to the following expression for thermal efficiency

ηO = 1−
�

�

�

�

Q4→1

Q2→3

�

�

�

�

= 1−
T4 − T1

T3 − T2
. (A.5)

From (A.1) and (A.2) we get T1/T4 = T2/T3 which can be used to obtain,

T4 − T1

T3 − T2
=

T1

T2
, (A.6)

which we use to simplify the expression of efficiency

ηO = 1−
T1

T2
. (A.7)

A.2 Carnot cycle

V

P

1

TH

2

3

TC

4

Figure A.2: Classical Carnot cycle.

We shall look at a Carnot cycle with an ideal gas as working substance. Initially, the gas is in a
state represented by the point 1 (Figure A.2). The four processes of the cycle are

1. Process 1→ 2 is reversible adiabatic compression until the temperature rises to TH .

2. Process 2→ 3 is reversible isothermal expansion at temperature TH .

3. Process 3→ 4 is reversible adiabatic expansion until the temperature drops to TC .

4. Process 4→ 1 is reversible isothermal compression at TC until the initial state is reached.
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A.2.1 Efficiency

Heat QH , is absorbed during the cycle in the isothermal process 2 → 3, which is calculated
as

Q2→3 =

∫ 3

2

TdS = TH(S3 − S2), (A.8)

and heat QC is rejected during the isothermal process 4→ 1

Q4→1 =

∫ 4

1

TdS = TC(S4 − S1). (A.9)

In the adiabatic processes no heat is exchanged, therefore dS = dQ/T = 0. This gives us S1 = S2

and S3 = S4. This relation between entropies is used to simplify thermal efficiency

ηC = 1−
�

�

�

�

Q4→1

Q2→3

�

�

�

�

= 1−
TC

TH
. (A.10)
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