Universal Coefficient Theorem (for Homology)

Ayush Singh

March 8, 2024

Let X be a topological space and G be an abelian group; and as in usual singular homology, let $\sigma^{n}: \Delta^{n} \rightarrow X$ be the singular n-simplices. Define groups $C_{n}(X ; G)$ as

$$
\begin{equation*}
C_{n}(X ; G):=\left\{\sum_{i=1}^{N} g_{i} \sigma_{i}^{n}: N \in \mathbb{Z}_{+}, \sigma_{i}^{n} \text { are } n \text {-simplices, } g_{i} \in G\right\}, \tag{I}
\end{equation*}
$$

and the operator ∂_{n}^{G} by its action on simplices, $\partial_{n}^{G}\left(\sum_{i} g_{i} \sigma_{i}^{n}\right):=\sum_{i} g_{i}\left(\partial_{n} \sigma_{i}^{n}\right)$.
Exercise ı. $\cdots \xrightarrow{\partial_{n+2}^{G}} C_{n+1}(X ; G) \xrightarrow{\partial_{n+1}^{G}} C_{n}(X ; G) \xrightarrow{\partial_{n}^{G}} C_{n-1}(X ; G) \xrightarrow{\partial_{n-1}^{G}} \cdots$ is a chain complex, i.e., show that ∂_{n}^{G} are group homomorphisms, and $\partial_{n}^{G} \circ \partial_{n-1}^{G}=0$.
Denote homology groups of this complex as $H_{n}(X ; G)$, and call them singular homology groups of X with coefficients in G.

Exercise 2. If X is a point, then $H_{n}(X ; G)=0$ for $n>0$, and $H_{0}(X ; G)=G$.
Exercise 3. Suppose G_{1}, G_{2} are abelian groups, and $\phi: G_{1} \rightarrow G_{2}$ is a group homomorphism. Show that induced homomorphism $\phi_{\sharp}: C_{n}\left(X ; G_{1}\right) \rightarrow C_{n}\left(X ; G_{2}\right)$ is a chain map, and therefore descends to a morphism of homology groups $\phi_{*}: H_{n}\left(X ; G_{1}\right) \rightarrow H_{n}\left(X ; G_{2}\right)$.
There is a natural isomorphism $C_{n}(G) \xrightarrow{\sim} C_{n} \otimes G$ given by $\sum_{i} g_{i} \sigma_{i}^{n} \mapsto \sum_{i} \sigma_{i}^{n} \otimes g_{i}$ and extended by \mathbb{Z}-linearity. Note that, with respect to this tensor product, the boundary map defined above decomposes as $\partial^{G}=\partial \otimes \mathrm{id}_{G}$.

Now, the problem we would like to address is the following: Given a chain complex $\cdots \xrightarrow{\partial} C_{n+1} \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \xrightarrow{\partial} \cdots$, and an abelian group G, we would like to compute the homology of chain complex,

$$
\cdots \xrightarrow{\partial \otimes \mathrm{id}_{G}} C_{n+1} \otimes G \xrightarrow{\partial \otimes \mathrm{id}_{G}} C_{n} \otimes G \xrightarrow{\partial \otimes \mathrm{id}_{G}} C_{n-1} \otimes G \xrightarrow{\partial \otimes \mathrm{id}_{G}} \cdots,
$$

in terms of $H_{n}(C)$ and G.
At this point it is natural to ask: why isn't $H_{n}(C ; G)=H_{n}(C) \otimes G$? A succinct, but rather unilluminating, answer would be: because the functor $\otimes G$ is not exact. Here is a motivating example that illustrates this.
Suppose, we have the following short exact sequence of abelian groups, $0 \rightarrow \mathbb{Z} \xrightarrow{2}$ $\mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0$. If it were to be tensored with $\mathbb{Z} / 2 \mathbb{Z}$, we would have the following
sequence, $0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{0} \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 0$, which fails to be exact at the first $\mathbb{Z} / 2 \mathbb{Z}$.
Homology groups $H_{n}(C ; G)$ fit into the following exact sequences,

$$
0 \rightarrow B_{n} \otimes G \xrightarrow{i_{n} \otimes \mathrm{id}_{G}} Z_{n} \otimes G \rightarrow H_{n}(C ; G) \rightarrow 0
$$

however, if I start with the short exact sequence $0 \rightarrow B_{n} \rightarrow Z_{n} \rightarrow H_{n}(C) \rightarrow 0$, and tensor with G, the resulting sequence,

$$
\begin{equation*}
0 \rightarrow B_{n} \otimes G \xrightarrow{i_{n} \otimes i d_{G}} Z_{n} \otimes G \rightarrow H_{n}(C) \otimes G \rightarrow 0 \tag{2}
\end{equation*}
$$

need not be exact, as seen in the $\mathbb{Z} / 2 \mathbb{Z}$ example above. As we shall see later, even though tensor product is not exact, it is right exact, i.e., if the sequence of abelian groups $A \rightarrow B \rightarrow C \rightarrow 0$ is exact, then so is $A \otimes G \rightarrow B \otimes G \rightarrow C \otimes G \rightarrow 0$.
The failure of (2) to be exact-and therefore the reason for $H_{n}(C ; G) \neq H_{n}(C) \otimes$ G-lies at $\rightarrow B_{n} \otimes G \rightarrow$, and is measured by the group $\operatorname{ker}\left(i_{n} \otimes \operatorname{id}_{G}\right)^{1}$. Indeed, (2) becomes exact at the insertion of this extra term,

$$
0 \rightarrow \operatorname{ker}\left(i_{n} \otimes \mathrm{id}_{G}\right) \rightarrow B_{n} \otimes G \xrightarrow{i_{n} \otimes \mathrm{id}_{G}} Z_{n} \otimes G \rightarrow H_{n}(C) \otimes G \rightarrow 0
$$

As before, let $\cdots \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} \cdots$ be a chain complex, and define cycles, $Z_{n}=\operatorname{ker} \partial_{n}$, and boundaries, $B_{n}=\operatorname{im} \partial_{n+1}$. Note that $B_{n} \subset Z_{n} \subset C_{n}$.
Exercise 4. Verify the following:
I. $\cdots \xrightarrow{\partial} Z_{n} \xrightarrow{\partial} \cdots$ and $\cdots \xrightarrow{\partial} B_{n} \xrightarrow{\partial} \cdots$ are chain complexes and $0 \rightarrow Z_{n} \hookrightarrow C_{n} \xrightarrow{\partial}$ $B_{n-1} \rightarrow 0$ is a split short exact sequence of chain complexes.
2. $\cdots \xrightarrow{\partial \otimes \mathrm{id}_{G}} Z_{n} \otimes G \xrightarrow{\partial \otimes \mathrm{id}_{G}} \cdots$ is a chain complex, and $H_{n}(Z \otimes G)=Z_{n} \otimes G$.
3. $\cdots \xrightarrow{\partial \otimes \mathrm{id}_{G}} B_{n} \otimes G \xrightarrow{\partial \otimes \mathrm{id}_{G}} \cdots$ is a chain complex, and $H_{n}(B \otimes G)=B_{n} \otimes G$.

Tensoring the short exact sequence in (I) above with G gives,

$$
\begin{equation*}
0 \rightarrow Z_{n} \otimes G \xrightarrow{i_{n} \otimes i \mathrm{id}_{G}} C_{n} \otimes G \xrightarrow{{\partial \otimes i \mathrm{id}_{G}}^{2}} B_{n-1} \otimes G \rightarrow 0, \tag{3}
\end{equation*}
$$

which, in general, may not be exact. However, since the original sequence splits, $C_{n}=Z_{n} \oplus B_{n-1}$, and we have the natural isomorphism, $C_{n} \otimes G=Z_{n} \otimes G \oplus B_{n-1} \otimes G$, the new sequence (3) is split exact as well.
This short exact sequence of complexes induces a long exact sequence in homology,
$\cdots \rightarrow B_{n} \otimes G \xrightarrow{i_{n} \otimes \mathrm{id}_{G}} Z_{n} \otimes G \rightarrow H_{n}(C ; G) \rightarrow B_{n-1} \otimes G \xrightarrow{i_{n-1} \otimes \mathrm{id}_{G}} Z_{n-1} \otimes G \rightarrow \cdots$,
${ }^{\mathrm{I}}$ Often denoted $\operatorname{Tor}\left(H_{n}(C), G\right)$
where $i_{n}: B_{n} \rightarrow Z_{n}$ is the usual inclusion, and the boundary maps $i_{n} \otimes \mathrm{id}_{G}$ are computed from an application of the snake lemma.
Long exact sequence above can be broken into the following short exact sequence,

$$
0 \longrightarrow \operatorname{coker}\left(i_{n} \otimes \mathrm{id}_{G}\right) \rightarrow H_{n}(C ; G) \longrightarrow \operatorname{ker}\left(i_{n-1} \otimes \mathrm{id}_{G}\right) \longrightarrow 0
$$

where $\operatorname{coker}\left(i_{n} \otimes \mathrm{id}_{G}\right)=Z_{n} \otimes G / \mathrm{im}\left(i_{n} \otimes i d_{G}\right)$.
Lemma i. If the sequence of abelian groups $A \xrightarrow{i} B \xrightarrow{j} C \rightarrow 0$ is exact, then so is $A \otimes G \xrightarrow{i \otimes \mathrm{id}_{G}} B \otimes G \xrightarrow{j \otimes \mathrm{id}_{G}} C \otimes G \longrightarrow 0$.

In particular, the above lemma implies that there is a natural isomorphism $C \otimes$ $G=B \otimes G / \operatorname{im}\left(i \otimes \mathrm{id}_{G}\right)$; so that with $A=B_{n}, B=Z_{n}$, and $C=H_{n}(C)$, we have $\operatorname{coker}\left(i_{n} \otimes \mathrm{id}_{G}\right)=H_{n}(C) \otimes G$.

If we recall the notation for $\operatorname{ker}\left(i_{n} \otimes \mathrm{id}_{G}\right)$ introduced in the previous section, we have the following short exact sequence,

$$
\begin{equation*}
0 \longrightarrow H_{n}(C) \otimes G \longrightarrow H_{n}(C ; G) \longrightarrow \operatorname{Tor}\left(H_{n-1}(C), G\right) \longrightarrow 0 \tag{4}
\end{equation*}
$$

which splits. This is the content of universal coefficient theorem (homology version).
To see that (4) splits, recall that the sequence $0 \rightarrow Z_{n} \rightarrow C_{n} \rightarrow B_{n-1} \rightarrow 0$ splits so that there is a projection map $p: C_{n} \rightarrow Z_{n}$ that restricts to the identity on $Z_{n}\left(p \circ i=\mathrm{id}_{Z_{n}}\right)$. Composing with the surjection $Z_{n} \rightarrow H_{n}(C)$, we have a map $C_{n} \rightarrow H_{n}(C)$. If we think of $\xrightarrow{\partial} H_{n}(C) \xrightarrow{\partial}$ as a (very silly) chain complex, $C \rightarrow H(C)$ can be seen to satisfy the chain map condition. Tensoring with G to get another chain map $C \otimes G \rightarrow$ $H(C) \otimes G$, and looking at its descendent in homology $H_{n}(C ; G) \rightarrow H_{n}(C) \otimes G$ gives the required splitting.

Something about free resolution of abelian groups, Tor as homology of a chain complex, independence from the choice of free resolution, properties of Tor, and computations (see Hatcher).

