Notes on the
 Schrödinger-Lichnerowicz-Weitzenböck Formula

Ayush Singh

July 23, 2023

Given a vector bundle $E \rightarrow M$ with a connection $\nabla^{E}: \Gamma(E) \rightarrow \Gamma\left(T^{*} M \otimes E\right)$, one can always define a connection Laplacian, $\nabla^{E *} \nabla^{E}: \Gamma(E) \rightarrow \Gamma(E)$. In a local frame $\left\{e_{\mu}\right\}$ for the tangent bundle,

$$
\begin{align*}
\nabla^{E *} \nabla^{E} & =-\sum_{\mu} \nabla_{\mu}^{E} \nabla_{\mu}^{E}+\sum_{\mu} \nabla_{\nabla_{\mu} e_{\mu}}^{E} \tag{I}\\
& =-\sum_{\mu} \nabla_{\mu}^{E} \nabla_{\mu}^{E}-\sum_{\mu, \nu} g\left(\nabla_{\nu} e_{\mu}, e_{\nu}\right) \nabla_{\mu}^{E} . \tag{2}
\end{align*}
$$

When $E=\bigwedge T^{*} M$, there is another notion of Laplacian: the Hodge Laplacian or the Laplace-de Rbam operator, $\Delta=d^{*} d+d d^{*}$.

It is reasonable to ask how these two second order operators, both called Laplacians, are related. The answer is given by the Weitzenböck identity (Weitzenböck 1923)

$$
\begin{equation*}
\Delta=\nabla^{*} \nabla+\mathscr{R}, \tag{3}
\end{equation*}
$$

where \mathscr{R} is a zero order operator that depends only on the curvature of M.
In spin geometry, one expects square of the Dirac operator to be a Laplacian, and one may ask how it is related to the spin connection Laplacian. The answer here is given by the Schrödinger-Lichnerowicz-Weitzenböck formula (Schrödinger 1932, Lichnerowicz 1963),

$$
\begin{equation*}
\not D^{2}=\nabla^{*} \nabla+\frac{1}{4} R, \tag{4}
\end{equation*}
$$

where ∇ is induced on the spinor bundle by the Levi-Civita connection, R is the scalar curvature of M.

This already has the following consequences:
Corollary. Any compact spin manifold of positive scalar curvature admits no nonzero barmonic spinors.

Corollary. On a compact spin manifold with $R \equiv 0$, barmonic spinors are globally parallel, i.e., $\psi \in \operatorname{ker} D D \Longrightarrow \nabla \psi \equiv 0$.

When spinors are coupled to a gauge field A, there is the following generalization,

$$
\begin{equation*}
\not D_{A}^{2}=\nabla^{A *} \nabla^{A}+\frac{1}{4} R+\frac{1}{2} F, \tag{s}
\end{equation*}
$$

where $F=d A$ is the gauge field strength.

I Notation

There are Lie group homomorphisms

- $\rho: \operatorname{Spin}(n) \rightarrow \mathrm{SO}(n)$,
- $\rho: \operatorname{Spin}^{\mathbb{C}}(n) \rightarrow \operatorname{SO}(n)$ given by $\rho[g, z]=\rho(g)$,
- $l: \operatorname{Spin}^{\mathbb{C}}(n) \rightarrow \mathrm{U}(1)$ given by $l[g, z]=z^{2}$,
- $p: \operatorname{Spin}^{\mathbb{C}}(n) \rightarrow \mathrm{SO}(n) \times \mathrm{U}(1)$ given by $p[g, z]=\left(\rho(g), z^{2}\right)$.

Corresponding Lie algebra homomorphisms can be obtained by differentiation. Recall $\mathfrak{s p i n}(n)=\operatorname{span}\left\{e_{\mu} e_{\nu} \in \mathscr{C}_{n}: 1 \leq \mu<\nu \leq n\right\}$ and $\mathfrak{s p i n}^{C}(n)=\mathfrak{s p i n}(n) \oplus i \mathbb{R}$.

- $\rho_{*}: \mathfrak{s p i n}(n) \rightarrow \mathfrak{s o}(n)$ given by $\rho_{*} e_{\mu} e_{\nu}=2 E_{\mu \nu}$,
- $\rho_{*}: \mathfrak{s p i n}^{\mathbb{C}}(n) \rightarrow \mathfrak{s o}(n)$ given by $\rho_{*}\left(e_{\mu}, e_{\nu}, i t\right)=2 E_{\mu \nu}$,
- $p_{*}: \mathfrak{s p i n}^{\mathbb{C}}(n) \rightarrow \mathfrak{s o}(n) \oplus i \mathbb{R}$ given by $\rho_{*}\left(e_{\mu} e_{\nu}, i t\right)=\left(2 E_{\mu \nu}, 2 i t\right)$.

Suppose (M, g) is an orientable Riemannian n-manifold, $Q \rightarrow M$ the principal $\mathrm{SO}(n)$ bundle of oriented orthonormal frames.

Let (P, η) be a spin ${ }^{\mathbb{C}}$ structure on $Q \rightarrow M$. Then there is a fibre-preserving action of $\mathrm{U}(1) \subset \operatorname{Spin}^{\mathbb{C}}(n)$ on P, and $P / \mathrm{U}(1) \cong Q$. Similarly, quotienting P by the $\operatorname{Spin}(n) \subset$ $\operatorname{Spin}^{\mathbb{C}}(n)$ action gives a principal $\mathrm{U}(1)$-bundle $E:=P / \operatorname{Spin}(n) \rightarrow M$. The fibreproduct $\mathrm{Q} \times E \rightarrow M$ is a principal $\mathrm{SO}(n) \times \mathrm{U}(1)$-bundle and there is a two-fold covering bundle morphism $\pi: P \rightarrow Q \times E$ induced by $p: \operatorname{Spin}^{\mathbb{C}} \rightarrow \mathrm{SO}(n) \times \mathrm{U}(1)$.

The complex Clifford algebra $\mathscr{C}_{n}^{\mathbb{C}}$ comes with a Dirac representation $\gamma: \mathscr{C}_{n}^{\mathbb{C}} \rightarrow$ $\operatorname{End}\left(\Delta_{n}\right)$, where $\Delta_{n}=\mathbb{C}^{2^{k}}$ for $n=2 k, 2 k+1 . \gamma$ restricts to representations of the real Clifford algebra, Pin, Spin groups and Lie algebras. The restriction $\gamma: \operatorname{Spin}(n) \rightarrow$ $\operatorname{Aut}\left(\Delta_{n}\right)$ is used to construct the spinor bundle $\Sigma:=P \times_{\gamma} \Delta_{n}$.

2 Connection

Suppose $\omega: T Q \rightarrow \mathfrak{s o}(n)$ is the Levi-Civita connection on $Q \rightarrow M$, and also fix a connection $A: T E \rightarrow i \mathbb{R}$ on E (where we have identified $\mathfrak{u}(1)$ with $i \mathbb{R}$). Denote by $\omega \times A: T(Q \times E) \rightarrow \mathfrak{s o}(n) \oplus i \mathbb{R}$, the connection induced on $Q \times E \rightarrow M . \omega \times A$ can be pulled back to $\pi^{*}(\omega \times A): T P \rightarrow \mathfrak{s o}(n) \oplus i \mathbb{R}$, and composed with p_{*}^{-1} to get a connection $\tilde{\omega}:=p_{*}^{-1} \pi^{*}(\omega \times A): T P \rightarrow \mathfrak{s p i n}^{\mathbb{C}}(n)$ on P.

If in local frames $e: U \rightarrow Q$ and $s: U \rightarrow E$,

$$
\begin{equation*}
e^{*} \omega=\sum_{\mu<\nu} \omega_{\mu \nu}^{e} E_{\mu \nu} \quad \text { and } \quad s^{*} A=A^{s}, \tag{6}
\end{equation*}
$$

then in the local frame $e \times s: U \rightarrow Q \times E$,

$$
\begin{equation*}
(e \times s)^{*}(\omega \times A)=\left(\sum_{\mu<\nu} \omega_{\mu \nu}^{e} E_{\mu \nu}, A^{s}\right) . \tag{7}
\end{equation*}
$$

Moreover, if $\widetilde{e \times s}: U \rightarrow P$ is a lift of $e \times s$ such that $e \times s=\pi \circ \widetilde{e \times s}$, then

$$
\begin{equation*}
(e \times s)^{*}(\omega \times A)=p_{*}(\widetilde{e \times s})^{*} \tilde{\omega}=\left(\sum_{\mu<\nu} \omega_{\mu \nu}^{e} E_{\mu \nu}, A^{s}\right) \tag{8}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
(\widetilde{e \times s})^{*} \tilde{\omega}=\left(\frac{1}{2} \sum_{\mu<\nu} \omega_{\mu \nu}^{e} e_{\mu} e_{\nu}, \frac{1}{2} A^{s}\right) . \tag{9}
\end{equation*}
$$

For a spinor $\psi: U \rightarrow \Sigma$, the covariant derivative with respect to this connection is

$$
\begin{equation*}
\nabla^{A} \psi=d \psi+\frac{1}{2} \sum_{\mu<\nu} \omega_{\mu \nu}^{e} e_{\mu} e_{\nu} \psi+\frac{1}{2} A^{s} \psi \tag{ıо}
\end{equation*}
$$

3 Operators

The spin connection Laplacian (in local coordinates)

$$
\begin{equation*}
\Delta_{A} \psi=\nabla^{A *} \nabla^{A}=-\sum_{\mu} \nabla_{\mu}^{A} \nabla_{\mu}^{A}-\sum_{\mu, \nu} g\left(\nabla_{\nu} e_{\mu}, e_{\nu}\right) \nabla_{\mu}^{A} \tag{II}
\end{equation*}
$$

Dirac operator on $\Gamma(\Sigma)$ is constructed by composing Clifford multiplication with the spin connection. In local coordinates

$$
\begin{equation*}
\not D_{A} \psi=\sum_{\mu} e_{\mu} \cdot \nabla_{\mu}^{A} \psi \tag{I2}
\end{equation*}
$$

4 Curvature

$\Omega=d \omega+\frac{1}{2}[\omega, \omega]$ and $F=d A$ are curvature 2-forms of ω and A respectively. If $\widetilde{\Omega}=d \tilde{\omega}+\frac{1}{2}[\tilde{\omega}, \tilde{\omega}]$, then it can be easily checked that

$$
\begin{equation*}
p_{*} \widetilde{\Omega}=\left(\pi^{*} \Omega, \pi^{*} F\right) \tag{프}
\end{equation*}
$$

In local coordinates, let

$$
\begin{equation*}
e^{*} \Omega=\sum_{\mu<\nu} \Omega_{\mu \nu}^{e} E_{\mu \nu}, \quad s^{*} F=s^{*} d A=d A^{s} \tag{I4}
\end{equation*}
$$

then

$$
\begin{equation*}
(\widetilde{e \times s})^{*} \widetilde{\Omega}=\left(\frac{1}{2} \sum_{\mu<\nu} \pi^{*} \Omega_{\mu \nu}^{e} e_{\mu} e_{\nu}, \frac{1}{2} \pi^{*} F^{s}\right) \tag{ㄷ5}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{A}\left(\nabla^{A} \psi\right)=(\widetilde{e \times s})^{*} \widetilde{\Omega} \psi=\frac{1}{2} \sum_{\mu<\nu} \Omega_{\mu \nu}^{e} e_{\mu} e_{\nu} \psi+\frac{1}{2} F^{s} \psi \tag{16}
\end{equation*}
$$

Let ∇ be the Levi-Civita connection on $T M \rightarrow M$ induced by $\omega: T Q \rightarrow \mathfrak{s o}(n)$. Then the Riemann curvature operator is defined as

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{17}
\end{equation*}
$$

and the Riemann curvature tensor as

$$
\begin{equation*}
\operatorname{Rm}(X, Y, Z, W)=g(R(X, Y) Z, W) \tag{18}
\end{equation*}
$$

In local coordinates $R_{\mu \nu \lambda_{\rho}}:=\operatorname{Rm}\left(e_{\mu}, e_{\nu}, e_{\lambda}, e_{\rho}\right)$. Also take this opportunity to recall
that the Ricci tensor is defined as

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=\sum_{\mu} \operatorname{Rm}\left(e_{\mu}, X, Y, e_{\mu}\right) \tag{19}
\end{equation*}
$$

or in local coordinates $R_{\mu \nu}=\sum_{\lambda} R_{\lambda \mu \nu \lambda}$. It can also be viewed as an endomorphism Ric : $T M \rightarrow T M$ as $\operatorname{Ric}(X)=\operatorname{Ric}(X, \cdot)^{\sharp}$. Finally, there is the scalar curvature, $R=$ $\sum_{\nu} R_{\nu \nu}=\sum_{\mu, \nu} R_{\mu \nu \nu \mu}$.
Recall, symmetries of the curvature tensor

- $R_{\mu \nu \lambda_{\rho}}=-R_{\nu \mu \lambda \rho}$
- $R_{\mu \nu \lambda \rho}=-R_{\mu \nu \rho \lambda}$
- $R_{\mu \nu \lambda \rho}+R_{\nu \lambda \mu \rho}+R_{\lambda \mu \nu \rho}=0$
- $R_{\mu \nu \lambda \rho}=R_{\lambda \rho \mu \nu}$

By the definition of the curvature 2-form, we have $R(X, Y) e_{\lambda}=\sum_{\rho} e^{*} \Omega_{\lambda \rho}(X, Y) e_{\rho}$, and therefore

$$
\begin{equation*}
e^{*} \Omega_{\mu \nu}(X, Y)=g\left(R(X, Y) e_{\mu}, e_{\nu}\right)=\frac{1}{2} \sum_{\lambda, \rho} R_{\mu \nu \lambda \rho} e^{\lambda} \wedge e^{\rho}(X, Y) \tag{20}
\end{equation*}
$$

where $\left\{e^{\mu}\right\}$ is the frame dual to $\left\{e_{\mu}\right\}$. This helps us write an explicit expression for $\nabla^{A} \nabla^{A} \psi$ in local coordinates

$$
\begin{equation*}
\nabla^{A} \nabla^{A} \psi=\frac{1}{4} \sum_{\mu<\nu}\left(\sum_{\lambda, \rho} R_{\mu \nu \lambda \rho} e^{\lambda} \wedge e^{\rho}\right) e_{\mu} e_{\nu} \psi+\frac{1}{2} F^{s} \psi \tag{2I}
\end{equation*}
$$

In analogy with the Riemann curvature for the tangent bundle, we can define $R^{\Sigma}(X, Y) \psi:=$ $\nabla^{A} \nabla^{A} \psi(X, Y)=\nabla_{X}^{A} \nabla_{Y}^{A} \psi-\nabla_{Y}^{A} \nabla_{X}^{A} \psi-\nabla_{[X, Y]}^{A} \psi$ for the spinor bundle $\Sigma \rightarrow M$. In coordinates

$$
\begin{equation*}
R^{\Sigma}(X, Y) \psi=\frac{1}{4} \sum_{\mu<\nu}\left(\sum_{\lambda, \rho} R_{\mu \nu \lambda \rho} e^{\lambda} \wedge e^{\rho}(X, Y)\right) e_{\mu} e_{\nu} \psi+\frac{1}{2} F^{s}(X, Y) \psi \tag{22}
\end{equation*}
$$

Lemma. With notation established the prequel,

$$
\begin{equation*}
\sum_{\mu} e_{\mu} \cdot R^{\Sigma}\left(X, e_{\mu}\right) \psi=-\frac{1}{2} \operatorname{Ric}(X) \cdot \psi+\frac{1}{2} i(X) F^{s} \cdot \psi \tag{23}
\end{equation*}
$$

Proof is by a computation in local coordinates, but it is not hard to believe that this is true. The first term is a kind of trace over Rm so appearance of the Ricci tensor is not a surprise; the second term requires a short calculation.

5 Formula

Theorem. Suppose that (M, g) is a Riemannian manifold with a spin ${ }^{\mathbb{C}}$ structure. Denote by R the scalar curvature of M, and let $F=d A$ be the curvature 2 -form of the connection A in the $\mathrm{U}(1)$ bundle associated with the spin ${ }^{\mathbb{C}}$ structure. Then one has

$$
\begin{equation*}
\not D_{A}^{2} \psi=\Delta_{A} \psi+\frac{1}{4} R \psi+\frac{1}{2} F \cdot \psi . \tag{24}
\end{equation*}
$$

Proof. Computation in local coordinates.

