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Topological groups

Definition (Topological group)
A topological group is a group, 𝐺, equipped with a topology such that the
group operations of multiplication

(𝑥, 𝑦) ↦ 𝑥𝑦, 𝐺 × 𝐺 → 𝐺, (1)

and inversion
𝑥 ↦ 𝑥−1, 𝐺 → 𝐺, (2)

are continuous.

Example (Examples of topological groups)

1. Finite groups with discrete topology

2. ℝ𝑛 with vector addition and usual topology

3. Matrix groups 𝐺𝐿(𝑛,ℝ), 𝑂(𝑛), 𝐺𝐿(𝑛, ℂ), 𝑈(𝑛) with subspace topology
inherited from ℝ𝑛×𝑛 or ℂ𝑛×𝑛.
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Locally compact group

Definition (Locally compact group)
A locally compact group is a topological group that is locally compact.

Definition (Haar measure)
Let 𝐺 be a locally compact group. A left Haar measure on 𝐺 is a nonzero
Radon measure 𝜇 on 𝐺 that satisfies 𝜇(𝑥𝐸) = 𝜇(𝐸) for every Borel set 𝐸 ⊆ 𝐺
and every 𝑥 ∈ 𝐺.

Theorem (Haar’s theorem)
Every locally compact group possesses a left Haar measure. Moreover, it is
unique upto multiplication by a positive number.

Example (Examples of Haar measure)

1. Finite groups with the normalized counting measure

2. ℝ𝑛 with the Lebesgue measure

3. 𝐺𝐿(𝑛,ℝ) with 𝑑𝜇(𝑥) = |det 𝑥|−𝑛∏𝑛𝑖,𝑗=1 𝑑𝑥𝑖𝑗
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Modular function

If 𝜇 is a Haar measure on the group 𝐺, then 𝜇𝑥 defined by 𝜇𝑥(𝐸) = 𝜇(𝐸𝑥) is
also a left invariant measure on 𝐺. By uniqueness of Haar measure these
should be related by a positive number Δ(𝑥) in the following way: 𝜇𝑥 = Δ(𝑥)𝜇.

Δ ∶ 𝐺 → (0,∞) is called the modular function of 𝐺.

Proposition

For any 𝑓 ∈ 𝐿1(𝐺, 𝜇),∫
𝐺
𝑓(𝑥𝑦) 𝑑𝑥 = Δ(𝑦−1)∫

𝐺
𝑓(𝑥) 𝑑𝑥.

Proposition
The modular function Δ ∶ 𝐺 → (ℝ+)

× is a continuous group homomorphism.

Proposition

For any 𝑓 ∈ 𝐿1(𝐺, 𝜇),∫
𝐺
𝑓(𝑥−1) 𝑑𝑥 = ∫

𝐺
𝑓(𝑥)Δ(𝑥−1) 𝑑𝑥.
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Group representations

Denote the space of bounded and unitary operators on a Hilbert space, 𝐻,
by 𝐵(𝐻) and 𝑈(𝐻) respectively.

Definition (Unitary representation of group)
Let 𝐺 be a locally compact group. A unitary representation of 𝐺 on the
Hilbert space 𝐻 is a group homomorphism 𝜋 ∶ 𝐺 → 𝑈(𝐻), which is
continuous with respect to the strong operator topology.

Definition (Invariant subspace)
Let (𝜋, 𝐻) be a representation of 𝐺. A closed subspace 𝐾 ⊆ 𝐻 is said to be
invariant if 𝜋(𝑥)𝑢 ∈ 𝐾 for all 𝑥 ∈ 𝐾.

Definition (Irreducible representation)
A representation (𝜋, 𝐻), is said to be irreducible if the only invariant
subspaces of 𝐻 are {0} and 𝐻.
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Translations of functions

Definition (Left and right translations)
Let 𝑓 ∶ 𝐺 → ℂ be a function on 𝐺. The left translation of 𝑓 by 𝑦 ∈ 𝐺 is
defined to be the function 𝐿𝑦𝑓 ∶ 𝐺 → ℂ given by 𝐿𝑦𝑓(𝑥) = 𝑓(𝑦

−1𝑥).

Similarly, the right translation of 𝑓 by 𝑦 ∈ 𝐺 is given by 𝑅𝑦𝑓(𝑥) = 𝑓(𝑥𝑦).
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Left regular representation

Consider 𝐺 acting on the Hilbert space 𝐿2(𝐺) ∶= 𝐿2(𝐺, 𝜇) by left translations.

𝜋𝐿 ∶ 𝐺 → 𝑈(𝐿2(𝐺)), 𝜋𝐿(𝑥)𝑓 = 𝐿𝑥𝑓 for 𝑓 ∈ 𝐿
2(𝐺) (3)

It is clear that 𝜋𝐿 is a homomorphism,

𝜋𝐿(𝑥𝑦)𝑓(𝑧) = 𝑓(𝑦
−1𝑥−1𝑧) = 𝐿𝑦𝑓(𝑥

−1𝑧) = 𝐿𝑥𝐿𝑦𝑓(𝑧) = 𝜋𝐿(𝑥)𝜋𝐿(𝑦)𝑓(𝑧). (4)

To see that 𝜋𝐿(𝑥) is unitary and bounded note that for any 𝑓 ∈ 𝐿
2(𝐺)

‖𝜋𝐿(𝑥)𝑓‖
2
2
= ‖𝐿𝑥𝑓‖

2
2
= ∫

𝐺
𝐿𝑥𝑓(𝑦)𝐿𝑥𝑓(𝑦) 𝑑𝑦 = ∫

𝐺
𝑓(𝑥−1𝑦)𝑓(𝑥−1𝑦) 𝑑𝑦 (5)

= ∫
𝐺
𝑓(𝑦)𝑓(𝑦) 𝑑𝑦 = ‖𝑓‖22 . (6)
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Group algebra

𝐿1(𝐺) ∶= 𝐿1(𝐺, 𝜇) is a Banach space.

Let 𝑓, 𝑔 ∈ 𝐿1(𝐺). With the convolution product, (𝑓 ∗ 𝑔)(𝑥) = ∫
𝐺
𝑓(𝑦)𝑔(𝑦−1𝑥) 𝑑𝑦,

it becomes a Banach algebra.

Indeed, using Tonelli’s theorem to exchange order of integrals,

‖𝑓 ∗ 𝑔‖1 = ∫
𝐺
|∫

𝐺
𝑓(𝑦)𝑔(𝑦−1𝑥) 𝑑𝑦| 𝑑𝑥 ≤∬

𝐺×𝐺
|𝑓(𝑦)𝑔(𝑦−1𝑥)| 𝑑𝑦 𝑑𝑥 (7)

= ∫
𝐺
|𝑓(𝑦)| (∫

𝐺
|𝑔(𝑦−1𝑥)| 𝑑𝑥) 𝑑𝑦 (8)

= ∫
𝐺
|𝑓(𝑦)| ‖𝑔‖1 𝑑𝑦 = ‖𝑓‖1 ‖𝑔‖1 < ∞. (9)
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𝑓∗(𝑥) = Δ(𝑥−1)𝑓(𝑥−1) defines an involution on 𝐿1(𝐺):

(𝑓∗)∗(𝑥) = Δ(𝑥−1)𝑓∗(𝑥−1) = Δ(𝑥−1)Δ(𝑥)𝑓(𝑥) = 𝑓(𝑥), (10)

(𝑓 + 𝜆𝑔)∗(𝑥) = Δ(𝑥−1)(𝑓 + 𝜆𝑔)(𝑥−1)

= Δ(𝑥−1)(𝑓(𝑥−1) + 𝜆𝑔(𝑥−1)) = 𝑓∗(𝑥) + 𝜆𝑔∗(𝑥), (11)

(𝑓 ∗ 𝑔)∗(𝑥) = Δ(𝑥−1)𝑓 ∗ 𝑔(𝑥−1) = Δ(𝑥−1)∫
𝐺
𝑓(𝑦)𝑔(𝑦−1𝑥−1) 𝑑𝑦

= Δ(𝑥−1)∫
𝐺
𝑓(𝑥−1𝑦)𝑔(𝑦−1) 𝑑𝑦

= Δ(𝑥−1)∫
𝐺
Δ(𝑦)𝑓(𝑥−1𝑦)Δ(𝑦−1)𝑔(𝑦−1) 𝑑𝑦

= ∫
𝐺
Δ(𝑦−1)𝑔(𝑦−1)Δ((𝑦−1𝑥)−1)𝑓((𝑦−1𝑥)−1) 𝑑𝑦

= ∫
𝐺
𝑔∗(𝑦)𝑓∗(𝑦−1𝑥) 𝑑𝑦 = 𝑔∗ ∗ 𝑓∗(𝑥), (12)

‖𝑓∗‖1 = ∫
𝐺
|Δ(𝑥−1)𝑓(𝑥−1)| 𝑑𝑥 = ∫

𝐺
|𝑓(𝑥)| 𝑑𝑥 = ‖𝑓‖1 . (13)
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With the convolution product and involution as defined above, 𝐿1(𝐺) has
the structure of a Banach ∗-algebra.

Definition (Group algebra)
Let 𝐺 be a locally compact group. The Banach ∗-algebra, 𝐿1(𝐺) equipped
with the convolution product and involution as defined above, is called the
group algebra of 𝐺.
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Representations of group algebra

Definition (∗-algebra representation)
Let 𝐴 be a ∗-algebra. A ∗-representation of 𝐴 on a Hilbert space 𝐻 is a
∗-algebra homomorphism 𝜋 ∶ 𝐴 → 𝐵(𝐻).

Invariant subspaces and irreducibility are defined exactly as in the case of
groups.

Definition (Nondegenerate representation)
A ∗-representation (𝜋, 𝐻), of 𝐴 is said to be nondegenerate if for every 𝑢 ∈ 𝐻,
there exists 𝑓 ∈ 𝐴 such that 𝜋(𝑓)𝑢 ≠ 0.
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Group algebra representation from group representation

Given a unitary representation (𝜋, 𝐻) of 𝐺, define a representation of 𝐿1(𝐺)
on the same Hilbert space 𝐻 by,

�̃�(𝑓) = ∫
𝐺
𝑓(𝑥)𝜋(𝑥) 𝑑𝑥, for 𝑓 ∈ 𝐿1(𝐺), (14)

where the integral is interpreted in the weak sense, i.e., for all 𝑢, 𝑣 ∈ 𝐻,

⟨𝑢|�̃�(𝑓)𝑣⟩ = ∫
𝐺
𝑓(𝑥)⟨𝑢|𝜋(𝑥)𝑣⟩ 𝑑𝑥. (15)

�̃�(𝑓) is bounded. Indeed, |⟨𝑢|�̃�(𝑓)𝑣⟩| ≤ ‖𝑓‖1 ‖𝑢‖‖𝑣‖, therefore
‖�̃�(𝑓)‖ ≤ ‖𝑓‖1.
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The correspondence 𝑓 ↦ �̃�(𝑓) is linear.

Moreover,

�̃�(𝑓 ∗ 𝑔) = ∫
𝐺
(𝑓 ∗ 𝑔)(𝑥)𝜋(𝑥) 𝑑𝑥 =∬

𝐺×𝐺
𝑓(𝑦)𝑔(𝑦−1𝑥)𝜋(𝑥) 𝑑𝑦 𝑑𝑥 (16)

=∬
𝐺×𝐺

𝑓(𝑦)𝑔(𝑧)𝜋(𝑦𝑧) 𝑑𝑦 𝑑𝑧 =∬
𝐺×𝐺

𝑓(𝑦)𝑔(𝑧)𝜋(𝑦)𝜋(𝑧) 𝑑𝑦 𝑑𝑧 (17)

= (∫
𝐺
𝑓(𝑦)𝜋(𝑦) 𝑑𝑦) (∫

𝐺
𝑔(𝑧)𝜋(𝑧) 𝑑𝑧) (18)

= �̃�(𝑓)�̃�(𝑔), (19)

and

�̃�(𝑓∗) = ∫
𝐺
𝑓(𝑥−1)Δ(𝑥−1)𝜋(𝑥) 𝑑𝑥 = ∫

𝐺
𝑓(𝑥)𝜋(𝑥−1) 𝑑𝑥 (20)

= ∫
𝐺
𝑓(𝑥)𝜋(𝑥)∗ 𝑑𝑥 = ∫

𝐺
[𝑓(𝑥)𝜋(𝑥)]∗ 𝑑𝑥 = �̃�(𝑓)∗. (21)

Therefore, �̃� is a ∗-representation of 𝐿1(𝐺) on 𝐻.

12



Lemma
Let (𝜋, 𝐻) be a unitary representation of a locally compact group, 𝐺. Then �̃�
as defined above is a ∗-representation of the group algebra, 𝐿1(𝐺), on 𝐻.
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Lemma
The representation �̃� is nondegenerate.

Proof.
Let 𝑢 ∈ 𝐻. By continuity of 𝜋, there exists a compact neighborhood, 𝑉, of 1𝐺
such that ‖𝜋(𝑥)𝑢 − 𝑢‖ < ‖𝑢‖ for 𝑥 ∈ 𝑉. With 𝑓 = 𝜇(𝑉)−1𝜒𝑉,

‖�̃�(𝑓)𝑢 − 𝑢‖ = ‖(𝜇(𝑉)−1∫
𝑉
𝜋(𝑥) 𝑑𝑥) 𝑢 − 𝑢‖ (22)

= 𝜇(𝑉)−1 ‖∫
𝑉
(𝜋(𝑥)𝑢 − 𝑢) 𝑑𝑥‖ (23)

≤ 𝜇(𝑉)−1∫
𝑉
‖𝜋(𝑥)𝑢 − 𝑢‖ 𝑑𝑥 < ‖𝑢‖ , (24)

therefore ‖�̃�(𝑓)𝑢‖ ≠ 0.
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Putting the two results together,

Theorem
Let (𝜋, 𝐻) be a unitary representation of 𝐺. The map 𝑓 ↦ �̃�(𝑓) is a
nondegenerate ∗-representation of the group algebra 𝐿1(𝐺) on 𝐻.
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Left regular representation

Recall the left regular representation of 𝐺 on 𝐿2(𝐺)

𝜋𝐿 ∶ 𝐺 → 𝑈(𝐿2(𝐺)), 𝜋𝐿(𝑥)𝑓 = 𝐿𝑥𝑓. (25)

The ∗-representation induced by 𝜋𝐿 on the group algebra acts by

�̃�𝐿(𝑓) = ∫
𝐺
𝑓(𝑥)𝜋𝐿(𝑥) 𝑑𝑥 = ∫

𝐺
𝑓(𝑥)𝐿𝑥 𝑑𝑥, (26)

so that
�̃�𝐿(𝑓)𝑔 = ∫

𝐺
𝑓(𝑥)𝐿𝑥𝑔𝑑𝑥 = 𝑓 ∗ 𝑔, (27)

for 𝑓 ∈ 𝐿1(𝐺) and 𝑔 ∈ 𝐿2(𝐺).

(Foreshadowing) There is at least one bounded representation of 𝐿1(𝐺).
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Group representation from group algebra representation

The converse

Theorem
If (�̃�, 𝐻) is a nondegenerate ∗-representation of 𝐿1(𝐺), then it arises from a
unique unitary representation, 𝜋, of 𝐺 on 𝐻.

is also true.
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Group C*-algebra

Definition (Group C*-algebra)
Let 𝐺 be a locally compact group. The group C*-algebra, 𝐶∗(𝐺), is defined as
the universal enveloping C*-algebra of the group algebra 𝐿1(𝐺).

To see that 𝐶∗(𝐺) is well defined, note that

1. (�̃�𝐿, 𝐿
2(𝐺)) is a bounded ∗-representation of 𝐿1(𝐺)

2. For any bounded representation 𝜌 of 𝐿1(𝐺), we have ‖𝜌(𝑓)‖ ≤ ‖𝑓‖1 < ∞,
and therefore supbdd repns ‖𝜌(𝑓)‖ < ∞ for every 𝑓 ∈ 𝐿1(𝐺).

3. ker �̃�𝐿 is trivial because �̃�𝐿(𝑓) = 0 ⟹ �̃�𝐿(𝑓)𝑔 = 0 for all 𝑔 ∈ 𝐿
2(𝐺).

Choose 𝑔 to be an approximate identity {𝜓𝛼} so that
�̃�𝐿(𝑓)𝜓𝛼 = 𝑓 ∗ 𝜓𝛼 = 0, therefore 𝑓 = 0.
In particular, ∩bdd repn ker 𝜌 is trivial.

This makes 𝐿1(𝐺) into a normed ∗-algebra with respect to the universal
norm,

‖𝑓‖𝑢 = sup
bdd repn

‖𝜌(𝑓)‖ . (28)
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𝐶∗(𝐺) is the norm completion of 𝐿1(𝐺) with respect to the universal norm.

C*-property is satisfied in 𝐿1(𝐺) with respect to ‖⋅‖𝑢 because operators in
𝐵(𝐻) satisfy the C*-property.

To establish a one-to-one correspondence between unitary representations
of 𝐺 and nondegenerate representations of 𝐶∗(𝐺), we use the universal
property of C*-algebras.
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Theorem (Universal property of universal enveloping C*-algebras)
Let 𝐴𝑢 be the universal enveloping C*-algebra of a ∗-algebra 𝐴,
�̃� = 𝐴/ ∩𝜌 ker 𝜌, and let 𝐵 be a C*-algebra. For any ∗-algebra homomorphism
𝜙 ∶ 𝐴 → 𝐵, there exists a unique ∗-algebra homomorphism 𝜙𝑢 ∶ 𝐴𝑢 → 𝐵
rendering the following diagram commutative

𝐴 𝐵

�̃� 𝐴𝑢
←→

𝜙

←↠pr

↩→in
← →�̃� ← →𝜙𝑢

𝐿1(𝐺) 𝐵(𝐻)

𝐿1(𝐺) 𝐶∗(𝐺)

←→𝜋

←↠pr

↩→in

← →�̃� ← →𝜋𝑢
Given a representation (𝜋, 𝐻) of 𝐿1(𝐺), we apply the above
theorem with 𝐴 = 𝐿1(𝐺), 𝐵 = 𝐵(𝐻), 𝜙 = 𝜋, and 𝐴𝑢 = 𝐶

∗(𝐺), to
get a unique representation of the group C*-algebra on 𝐻.

Moreover, 𝜋 nondegenerate ⟺ 𝜋𝑢 nondegenerate.
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Finally, as we have established

• A one-to-one correspondence between unitary representations of 𝐺
and nondegenerate representations of 𝐿1(𝐺), and

• A one-to-one correspondence between nondegenerate representations
of 𝐿1(𝐺) and 𝐶∗(𝐺),

𝐿1(𝐺) 𝐵(𝐻)

𝐶∗(𝐺)

←→𝜋

↩→in

← →𝜋𝑢

We have

Theorem
Let 𝐺 be a locally compact group. Every unitary representation of 𝐺 induces
a nondegenerate representation of 𝐶∗(𝐺) on the same Hilbert space.
Conversely, every nondegenerate representation of 𝐶∗(𝐺) is induced by a
unique unitary representation of 𝐺.
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Group representation from group algebra representation (proof)

In the following slides, we are going to construct a unique, unitary
representation of 𝐺 from a given nondegenerate representation of the
group algebra 𝐿1(𝐺).
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Let (�̃�, 𝐻) be a representation of 𝐿1(𝐺) arising from the representation (𝜋, 𝐻)
of 𝐺. For 𝑥 ∈ 𝐺, 𝑓 ∈ 𝐿1(𝐺),

𝜋(𝑥)�̃�(𝑓) = 𝜋(𝑥)∫
𝐺
𝑓(𝑦)𝜋(𝑦) 𝑑𝑦 = ∫

𝐺
𝑓(𝑦)𝜋(𝑥𝑦) 𝑑𝑦 (29)

= ∫
𝐺
𝑓(𝑥−1𝑧)𝜋(𝑧) 𝑑𝑧 = ∫

𝐺
𝐿𝑥𝑓(𝑧)𝜋(𝑧) 𝑑𝑧 (30)

= �̃�(𝐿𝑥𝑓). (31)

Given a ∗-representation (�̃�, 𝐻) of 𝐿1(𝐺), fix 𝑥 ∈ 𝐺 and define 𝜋𝐺(𝑥) ∶ 𝐾 → 𝐻
on the subspace

𝐾 = {�̃�(𝑓)𝑢 ∶ 𝑓 ∈ 𝐿1(𝐺), 𝑢 ∈ 𝐻}, (32)

by 𝜋𝐺(𝑥)�̃�(𝑓)𝑢 = �̃�(𝐿𝑥𝑓)𝑢.
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Definition (Approximate identity)
Let 𝐴 be a Banach algebra. A net, {𝑥𝛼}, in 𝐴 is called an approximate identity
if

1. ‖𝑥𝛼‖ = 1,

2. ‖𝑥𝛼𝑎 − 𝑎‖ → 0 and ‖𝑎𝑥𝛼 − 𝑎‖ → 0 for every 𝑎 ∈ 𝐴.

Example (Approximate identity of 𝐿1(𝐺))
Let {𝑉𝛼} be a neighbourhood system for 1𝐺 of symmetric compact sets.
𝜓𝛼 = 𝜇(𝑉𝛼)

−1𝜒𝑉 is an approximate identity of 𝐿
1(𝐺).
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Lemma
𝜋𝐺(𝑥) is bounded on 𝐾 and ‖𝜋𝐺(𝑥)‖ ≤ 1.

Proof.
Note that as �̃� is a ∗-representation, ‖�̃�‖ ≤ 1.

Let {𝜓𝑈} be an approximate identity of 𝐿
1(𝐺). For any 𝑓 ∈ 𝐿1(𝐺),

𝐿𝑥𝜓𝑈 ∗ 𝑓 = 𝐿𝑥(𝜓𝑈 ∗ 𝑓)
𝐿1−−→ 𝐿𝑥𝑓.

‖𝜋𝐺(𝑥)�̃�(𝑓)𝑢‖ = ‖�̃�(𝐿𝑥𝑓)𝑢‖ = lim𝑈 ‖�̃�(𝐿𝑥𝜓𝑈 ∗ 𝑓)𝑢‖ (33)

≤ lim
𝑈
‖�̃�(𝐿𝑥𝜓𝑈)‖ ‖�̃�(𝑓)𝑢‖ (34)

≤ lim
𝑈
‖𝐿𝑥𝜓𝑈‖‖�̃�(𝑓)𝑢‖ ≤ ‖�̃�(𝑓)𝑢‖ < ∞ (35)

In particular, ‖𝜋𝐺(𝑥)‖ ≤ 1.
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Lemma
𝐾 is a dense subspace of 𝐻.

Proof.
Suppose there is a 𝑣 ∈ 𝐻 such that 𝑣 ⟂ 𝐾. Then, ⟨�̃�(𝑓)𝑢|𝑣⟩ = ⟨𝑢|�̃�(𝑓∗)𝑣⟩ = 0 for
every 𝑓 ∈ 𝐿1(𝐺) and 𝑢 ∈ 𝐻. Since �̃� is nondegenerate, 𝑣 = 0.

𝐾⟂ = {0} therefore 𝐾 = (𝐾⟂)⟂ = 𝐻.

As 𝜋𝐺(𝑥) is a bounded operator on a dense subspace, it has a unique norm
preserving extension to 𝐻.
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Lemma
𝜋𝐺 ∶ 𝐺 → 𝐵(𝐻) is a group homomorphism.

Proof.
Let 𝑥, 𝑦 ∈ 𝐺, 𝑓 ∈ 𝐿1(𝐺) and 𝑢 ∈ 𝐻, then

𝜋𝐺(𝑥𝑦)�̃�(𝑓)𝑢 = �̃�(𝐿𝑥𝑦𝑓)𝑢 = �̃�(𝐿𝑥𝐿𝑦𝑓)𝑢 (36)

= 𝜋𝐺(𝑥)�̃�(𝐿𝑦𝑓)𝑢 (37)

= 𝜋𝐺(𝑥)𝜋𝐺(𝑦)�̃�(𝑓)𝑢, (38)

therefore 𝜋𝐺(𝑥𝑦) = 𝜋𝐺(𝑥)𝜋𝐺(𝑦).
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Lemma
Let 𝑥 ∈ 𝐺. 𝜋𝐺(𝑥) is unitary.

Proof.

‖𝑢‖ = ‖𝜋𝐺(𝑥
−1)𝜋𝐺(𝑥)𝑢‖ ≤ ‖𝜋𝐺(𝑥)𝑢‖ ≤ ‖𝑢‖ , (39)

using ‖𝜋𝐺(𝑔)‖ ≤ 1 for every 𝑔 ∈ 𝐺.

We have shown that (𝜋𝐺, 𝐻) is a unitary representation of 𝐺.

The penultimate thing to do is show that �̃�𝐺 = �̃�.
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Lemma
�̃�𝐺 = �̃�.

Proof.
We will use the fact that �̃� ∶ 𝐿1(𝐺) → 𝐵(𝐻) is a bounded linear map and
therefore commutes with the integral. Let 𝑓, 𝑔 ∈ 𝐿1(𝐺),

�̃�(𝑓)�̃�(𝑔) = �̃�(𝑓 ∗ 𝑔) (40)

= �̃� (∫
𝐺
𝑓(𝑦)𝐿𝑦𝑔𝑑𝑦) = ∫

𝐺
𝑓(𝑦)�̃�(𝐿𝑦𝑔) 𝑑𝑦 (41)

= ∫
𝐺
𝑓(𝑦)𝜋𝐺(𝑦)�̃�(𝑔) 𝑑𝑦 (42)

= �̃�𝐺(𝑓)�̃�(𝑔). (43)

Since the choice of 𝑓 was arbitrary, �̃�(𝑓) = �̃�𝐺(𝑓) for all 𝑓 ∈ 𝐿
1(𝐺).
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Lemma
Let 𝜏 and 𝜋 be unitary representations of 𝐺 on a Hilbert space 𝐻, and let ̃𝜏
and �̃� be corresponding ∗-representations of 𝐿1(𝐺). If ̃𝜏(𝑓) = �̃�(𝑓) for all
𝑓 ∈ 𝐿1(𝐺), then 𝜏(𝑥) = 𝜋(𝑥) for all 𝑥 ∈ 𝐺.

Proof.
For all 𝑢, 𝑣 ∈ 𝐻,

⟨𝑢| ̃𝜏(𝑓)𝑣⟩ = ⟨𝑢|�̃�(𝑓)𝑣⟩ ⟹ ∫
𝐺
𝑓(𝑥)(⟨𝑢|𝜏(𝑥)𝑣⟩ − ⟨𝑢|𝜋(𝑥)𝑣⟩) 𝑑𝑥 = 0.

As 𝑓 ∈ 𝐿1(𝐺) is arbitrary, ⟨𝑢|𝜏(𝑥)𝑣⟩ = ⟨𝑢|𝜋(𝑥)𝑣⟩ for every 𝑥 ∈ 𝐺 and every
𝑢, 𝑣 ∈ 𝐻. Therefore 𝜏(𝑥) = 𝜋(𝑥) for every 𝑥 ∈ 𝐻.
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Putting all of the results together, we have shown

Theorem
If (�̃�, 𝐻) is a nondegenerate ∗-representation of 𝐿1(𝐺), then it arises from a
unique unitary representation, 𝜋, of 𝐺 on 𝐻.

With the converse

Theorem
Let (𝜋, 𝐻) be a unitary representation of 𝐺. The map 𝑓 ↦ �̃�(𝑓) is a
nondegenerate ∗-representation of the group algebra 𝐿1(𝐺) on 𝐻.

We have established a one-to-one correspondence between unitary
representations of groups and nondegenerate representations of group
algebras.
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Thank you.
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