Group C*-algebras of Locally Compact Groups

Ayush Singh 27 January 2023

Scuola Internazionale Superiore di Studi Avanzati Trieste

Definition (Topological group)

A *topological group* is a group, *G*, equipped with a topology such that the group operations of multiplication

$$(x, y) \mapsto xy, \quad G \times G \to G,$$
 (1)

and inversion

$$x \mapsto x^{-1}, \quad G \to G,$$
 (2)

are continuous.

Example (Examples of topological groups)

- 1. Finite groups with discrete topology
- 2. \mathbb{R}^n with vector addition and usual topology
- 3. Matrix groups $GL(n, \mathbb{R}), O(n), GL(n, \mathbb{C}), U(n)$ with subspace topology inherited from $\mathbb{R}^{n \times n}$ or $\mathbb{C}^{n \times n}$.

Definition (Locally compact group)

A locally compact group is a topological group that is locally compact.

Definition (Haar measure)

Let G be a locally compact group. A left Haar measure on G is a nonzero Radon measure μ on G that satisfies $\mu(xE) = \mu(E)$ for every Borel set $E \subseteq G$ and every $x \in G$.

Theorem (Haar's theorem)

Every locally compact group possesses a left Haar measure. Moreover, it is unique upto multiplication by a positive number.

Example (Examples of Haar measure)

- 1. Finite groups with the normalized counting measure
- 2. \mathbb{R}^n with the Lebesgue measure
- 3. $GL(n, \mathbb{R})$ with $d\mu(x) = |\det x|^{-n} \prod_{i,j=1}^{n} dx_{ij}$

If μ is a Haar measure on the group *G*, then μ_x defined by $\mu_x(E) = \mu(Ex)$ is also a left invariant measure on *G*. By uniqueness of Haar measure these should be related by a positive number $\Delta(x)$ in the following way: $\mu_x = \Delta(x)\mu$.

 $\Delta: G \to (0, \infty)$ is called the modular function of G.

Proposition

For any
$$f \in L^1(G, \mu)$$
, $\int_G f(xy) dx = \Delta(y^{-1}) \int_G f(x) dx$.

Proposition

The modular function Δ : $G \rightarrow (\mathbb{R}_{+})^{\times}$ is a continuous group homomorphism.

Proposition

For any
$$f \in L^1(G,\mu)$$
, $\int_G f(x^{-1}) dx = \int_G f(x)\Delta(x^{-1}) dx$.

Denote the space of bounded and unitary operators on a Hilbert space, H, by B(H) and U(H) respectively.

Definition (Unitary representation of group)

Let G be a locally compact group. A unitary representation of G on the Hilbert space H is a group homomorphism $\pi : G \rightarrow U(H)$, which is continuous with respect to the strong operator topology.

Definition (Invariant subspace)

Let (π, H) be a representation of G. A closed subspace $K \subseteq H$ is said to be *invariant* if $\pi(x)u \in K$ for all $x \in K$.

Definition (Irreducible representation)

A representation (π , H), is said to be *irreducible* if the only invariant subspaces of H are {0} and H.

Definition (Left and right translations)

Let $f : G \to \mathbb{C}$ be a function on G. The *left translation* of f by $y \in G$ is defined to be the function $L_y f : G \to \mathbb{C}$ given by $L_y f(x) = f(y^{-1}x)$.

Similarly, the *right translation* of f by $y \in G$ is given by $R_v f(x) = f(xy)$.

Consider G acting on the Hilbert space $L^2(G) := L^2(G, \mu)$ by left translations.

$$\pi_{L}: G \to U(L^{2}(G)), \quad \pi_{L}(x)f = L_{x}f \text{ for } f \in L^{2}(G)$$
(3)

It is clear that π_L is a homomorphism,

$$\pi_{L}(xy)f(z) = f(y^{-1}x^{-1}z) = L_{y}f(x^{-1}z) = L_{x}L_{y}f(z) = \pi_{L}(x)\pi_{L}(y)f(z).$$
(4)

To see that $\pi_L(x)$ is unitary and bounded note that for any $f \in L^2(G)$

$$\|\pi_{L}(x)f\|_{2}^{2} = \|L_{x}f\|_{2}^{2} = \int_{G} \overline{L_{x}f(y)}L_{x}f(y)\,dy = \int_{G} \overline{f(x^{-1}y)}f(x^{-1}y)\,dy$$
(5)

$$= \int_{G} \overline{f(y)} f(y) \, dy = \|f\|_{2}^{2}.$$
 (6)

 $L^{1}(G) := L^{1}(G, \mu)$ is a Banach space.

Let $f, g \in L^1(G)$. With the convolution product, $(f * g)(x) = \int_G f(y)g(y^{-1}x) dy$, it becomes a Banach algebra.

Indeed, using Tonelli's theorem to exchange order of integrals,

$$\|f * g\|_{1} = \int_{G} \left| \int_{G} f(y)g(y^{-1}x) \, dy \right| \, dx \le \iint_{G \times G} |f(y)g(y^{-1}x)| \, dy \, dx$$
(7)
$$= \int_{G} |f(y)| \left(\int_{G} |g(y^{-1}x)| \, dx \right) dy$$
(8)
$$= \int_{G} |f(y)| \|g\|_{1} \, dy = \|f\|_{1} \|g\|_{1} < \infty.$$
(9)

 $f^*(x) = \Delta(x^{-1})\overline{f(x^{-1})}$ defines an involution on $L^1(G)$:

$$(f^{*})^{*}(x) = \Delta(x^{-1})\overline{f^{*}(x^{-1})} = \Delta(x^{-1})\Delta(x)f(x) = f(x),$$
(10)

$$(f + \lambda g)^{*}(x) = \Delta(x^{-1})(\overline{f + \lambda g})(x^{-1}) = \Delta(x^{-1}) = f^{*}(x) + \overline{\lambda}g^{*}(x),$$
(11)

$$(f * g)^{*}(x) = \Delta(x^{-1})\overline{f * g(x^{-1})} = \Delta(x^{-1}) \int_{G} \overline{f(y)g(y^{-1}x^{-1})} dy = \Delta(x^{-1}) \int_{G} \overline{f(x^{-1}y)g(y^{-1})} dy = \Delta(x^{-1}) \int_{G} \Delta(y)\overline{f(x^{-1}y)}\Delta(y^{-1})\overline{g(y^{-1})} dy = \int_{G} \Delta(y^{-1})\overline{g(y^{-1})}\Delta((y^{-1}x)^{-1})\overline{f((y^{-1}x)^{-1})} dy = \int_{G} g^{*}(y)f^{*}(y^{-1}x) dy = g^{*} * f^{*}(x),$$
(12)

$$\|f^{*}\|_{1} = \int_{G} |\Delta(x^{-1})\overline{f(x^{-1})}| dx = \int_{G} |\overline{f(x)}| dx = \|f\|_{1}.$$
(13)

8

With the convolution product and involution as defined above, $L^1(G)$ has the structure of a Banach *-algebra.

Definition (Group algebra)

Let G be a locally compact group. The Banach *-algebra, $L^1(G)$ equipped with the convolution product and involution as defined above, is called the group algebra of G.

Definition (*-algebra representation)

Let A be a *-algebra. A *-representation of A on a Hilbert space H is a *-algebra homomorphism $\pi : A \rightarrow B(H)$.

Invariant subspaces and irreducibility are defined exactly as in the case of groups.

Definition (Nondegenerate representation)

A *-representation (π , H), of A is said to be *nondegenerate* if for every $u \in H$, there exists $f \in A$ such that $\pi(f)u \neq 0$.

Given a unitary representation (π, H) of G, define a representation of $L^{1}(G)$ on the same Hilbert space H by,

$$\tilde{\pi}(f) = \int_{G} f(x)\pi(x) \, dx, \quad \text{for } f \in L^{1}(G), \tag{14}$$

where the integral is interpreted in the weak sense, i.e., for all $u, v \in H$,

$$\langle u | \tilde{\pi}(f) v \rangle = \int_{G} f(x) \langle u | \pi(x) v \rangle \, dx. \tag{15}$$

 $\tilde{\pi}(f)$ is bounded. Indeed, $|\langle u|\tilde{\pi}(f)v\rangle| \le ||f||_1 ||u|| ||v||$, therefore $||\tilde{\pi}(f)|| \le ||f||_1$.

The correspondence $f \mapsto \tilde{\pi}(f)$ is linear.

Moreover,

$$\tilde{\pi}(f * g) = \iint_{G} (f * g)(x)\pi(x) \, dx = \iint_{G \times G} f(y)g(y^{-1}x)\pi(x) \, dy \, dx \tag{16}$$

$$= \iint_{G \times G} f(y)g(z)\pi(yz) \, dy \, dz = \iint_{G \times G} f(y)g(z)\pi(y)\pi(z) \, dy \, dz$$
(17)

$$= \left(\int_{G} f(y)\pi(y) \, dy \right) \left(\int_{G} g(z)\pi(z) \, dz \right)$$
(18)

$$=\tilde{\pi}(f)\tilde{\pi}(g), \tag{19}$$

and

$$\tilde{\pi}(f^*) = \int_G \overline{f(x^{-1})} \Delta(x^{-1}) \pi(x) \, dx = \int_G \overline{f(x)} \pi(x^{-1}) \, dx \tag{20}$$

$$= \int_{G} \overline{f(x)} \pi(x)^{*} dx = \int_{G} [f(x)\pi(x)]^{*} dx = \tilde{\pi}(f)^{*}.$$
 (21)

Therefore, $\tilde{\pi}$ is a *-representation of $L^1(G)$ on H.

Let (π, H) be a unitary representation of a locally compact group, G. Then $\tilde{\pi}$ as defined above is a *-representation of the group algebra, $L^1(G)$, on H.

The representation $\tilde{\pi}$ is nondegenerate.

Proof.

Let $u \in H$. By continuity of π , there exists a compact neighborhood, V, of 1_G such that $||\pi(x)u - u|| < ||u||$ for $x \in V$. With $f = \mu(V)^{-1}\chi_V$,

$$\|\tilde{\pi}(f)u - u\| = \left\| \left(\mu(V)^{-1} \int_{V} \pi(x) \, dx \right) u - u \right\|$$
(22)

$$= \mu(V)^{-1} \left\| \int_{V} (\pi(x)u - u) \, dx \right\|$$
(23)

$$\leq \mu(V)^{-1} \int_{V} \|\pi(x)u - u\| \ dx < \|u\|, \qquad (24)$$

therefore $\|\tilde{\pi}(f)u\| \neq 0$.

Putting the two results together,

Theorem

Let (π, H) be a unitary representation of G. The map $f \mapsto \tilde{\pi}(f)$ is a nondegenerate *-representation of the group algebra $L^1(G)$ on H.

Recall the left regular representation of G on $L^2(G)$

$$\pi_L : G \to U(L^2(G)), \quad \pi_L(x)f = L_x f.$$
(25)

The *-representation induced by π_{L} on the group algebra acts by

$$\tilde{\pi}_{L}(f) = \int_{G} f(x) \pi_{L}(x) \, dx = \int_{G} f(x) L_{x} \, dx, \tag{26}$$

so that

$$\tilde{\pi}_L(f)g = \int_G f(x)L_x g\,dx = f \star g,\tag{27}$$

for $f \in L^1(G)$ and $g \in L^2(G)$.

(Foreshadowing) There is at least one bounded representation of $L^{1}(G)$.

The converse

Theorem

If $(\tilde{\pi}, H)$ is a nondegenerate *-representation of $L^1(G)$, then it arises from a unique unitary representation, π , of G on H.

is also true.

Definition (Group C*-algebra)

Let G be a locally compact group. The group C^* -algebra, $C^*(G)$, is defined as the universal enveloping C^* -algebra of the group algebra $L^1(G)$.

To see that $C^*(G)$ is well defined, note that

- 1. $(\tilde{\pi}_L, L^2(G))$ is a bounded *-representation of $L^1(G)$
- 2. For any bounded representation ρ of $L^1(G)$, we have $\|\rho(f)\| \le \|f\|_1 < \infty$, and therefore $\sup_{bdd \text{ repns}} \|\rho(f)\| < \infty$ for every $f \in L^1(G)$.
- 3. ker $\tilde{\pi}_{L}$ is trivial because $\tilde{\pi}_{L}(f) = 0 \implies \tilde{\pi}_{L}(f)g = 0$ for all $g \in L^{2}(G)$. Choose g to be an approximate identity $\{\psi_{\alpha}\}$ so that $\tilde{\pi}_{L}(f)\psi_{\alpha} = f * \psi_{\alpha} = 0$, therefore f = 0. In particular, $\cap_{bdd repn} \ker \rho$ is trivial.

This makes *L*¹(*G*) into a normed *-algebra with respect to the *universal norm*,

$$||f||_{u} = \sup_{\text{bdd repn}} ||\rho(f)||.$$
 (28)

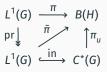
 $C^*(G)$ is the norm completion of $L^1(G)$ with respect to the universal norm. C*-property is satisfied in $L^1(G)$ with respect to $\|\cdot\|_u$ because operators in B(H) satisfy the C*-property.

To establish a one-to-one correspondence between unitary representations of *G* and nondegenerate representations of $C^*(G)$, we use the universal property of C*-algebras.

Theorem (Universal property of universal enveloping C*-algebras)

Let A_u be the universal enveloping C*-algebra of a *-algebra A, $\tilde{A} = A / \cap_{\rho} \ker \rho$, and let B be a C*-algebra. For any *-algebra homomorphism $\phi : A \to B$, there exists a unique *-algebra homomorphism $\phi_u : A_u \to B$ rendering the following diagram commutative

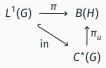
Given a representation (π, H) of $L^1(G)$, we apply the above theorem with $A = L^1(G)$, B = B(H), $\phi = \pi$, and $A_u = C^*(G)$, to get a unique representation of the group C*-algebra on H.



Moreover, π nondegenerate $\iff \pi_u$ nondegenerate.

Finally, as we have established

- A one-to-one correspondence between unitary representations of G and nondegenerate representations of L¹(G), and
- A one-to-one correspondence between nondegenerate representations of L¹(G) and C^{*}(G),



We have

Theorem

Let G be a locally compact group. Every unitary representation of G induces a nondegenerate representation of C*(G) on the same Hilbert space. Conversely, every nondegenerate representation of C*(G) is induced by a unique unitary representation of G. In the following slides, we are going to construct a unique, unitary representation of G from a given nondegenerate representation of the group algebra $L^{1}(G)$.

Let $(\tilde{\pi}, H)$ be a representation of $L^1(G)$ arising from the representation (π, H) of G. For $x \in G$, $f \in L^1(G)$,

$$\pi(x)\tilde{\pi}(f) = \pi(x) \int_{G} f(y)\pi(y) \, dy = \int_{G} f(y)\pi(xy) \, dy$$
(29)

$$= \int_{G} f(x^{-1}z)\pi(z) \, dz = \int_{G} L_{x}f(z)\pi(z) \, dz \tag{30}$$

$$= \tilde{\pi}(L_{\chi}f). \tag{31}$$

Given a *-representation $(\tilde{\pi}, H)$ of $L^1(G)$, fix $x \in G$ and define $\pi_G(x) : K \to H$ on the subspace

$$K = \{ \tilde{\pi}(f)u : f \in L^{1}(G), u \in H \},$$
(32)

by $\pi_G(x)\tilde{\pi}(f)u = \tilde{\pi}(L_x f)u$.

Definition (Approximate identity)

Let A be a Banach algebra. A net, $\{x_{\alpha}\}$, in A is called an *approximate identity* if

1.
$$||x_{\alpha}|| = 1$$
,
2. $||x_{\alpha}a - a|| \rightarrow 0$ and $||ax_{\alpha} - a|| \rightarrow 0$ for every $a \in A$.

Example (Approximate identity of L¹(G)**)**

Let { V_{α} } be a neighbourhood system for 1_G of symmetric compact sets. $\psi_{\alpha} = \mu(V_{\alpha})^{-1}\chi_{V}$ is an approximate identity of $L^{1}(G)$.

 $\pi_G(x)$ is bounded on K and $\|\pi_G(x)\| \le 1$.

Proof.

Note that as $\tilde{\pi}$ is a *-representation, $\|\tilde{\pi}\| \leq 1$.

Let $\{\psi_U\}$ be an approximate identity of $L^1(G)$. For any $f \in L^1(G)$, $L_x \psi_U * f = L_x (\psi_U * f) \xrightarrow{L^1} L_x f$. $\|\pi_G(x) \tilde{\pi}(f) u\| = \|\tilde{\pi}(L_x f) u\| = \lim_U \|\tilde{\pi}(L_x \psi_U * f) u\|$ (33) $\leq \lim_U \|\tilde{\pi}(L_x \psi_U)\| \|\tilde{\pi}(f) u\|$ (34) $\leq \lim_U \|L_x \psi_U\| \|\tilde{\pi}(f) u\| \leq \|\tilde{\pi}(f) u\| < \infty$ (35)

In particular, $\|\pi_G(x)\| \leq 1$.

K is a dense subspace of H.

Proof.

Suppose there is a $v \in H$ such that $v \perp K$. Then, $\langle \tilde{\pi}(f)u | v \rangle = \langle u | \tilde{\pi}(f^*)v \rangle = 0$ for every $f \in L^1(G)$ and $u \in H$. Since $\tilde{\pi}$ is nondegenerate, v = 0.

 $K^{\perp} = \{0\}$ therefore $\overline{K} = (K^{\perp})^{\perp} = H$.

As $\pi_{G}(x)$ is a bounded operator on a dense subspace, it has a unique norm preserving extension to *H*.

 $\pi_G : G \rightarrow B(H)$ is a group homomorphism.

Proof.

Let $x, y \in G$, $f \in L^1(G)$ and $u \in H$, then

$$\pi_{G}(xy)\tilde{\pi}(f)u = \tilde{\pi}(L_{xy}f)u = \tilde{\pi}(L_{x}L_{y}f)u$$
(36)

$$= \pi_G(x)\tilde{\pi}(L_y f)u \tag{37}$$

$$= \pi_G(x)\pi_G(y)\tilde{\pi}(f)u, \tag{38}$$

therefore $\pi_G(xy) = \pi_G(x)\pi_G(y)$.

Let $x \in G$. $\pi_G(x)$ is unitary.

Proof.

$$\|u\| = \|\pi_{G}(x^{-1})\pi_{G}(x)u\| \le \|\pi_{G}(x)u\| \le \|u\|$$
,

using $\|\pi_G(g)\| \leq 1$ for every $g \in G$.

We have shown that (π_G, H) is a unitary representation of G.

The penultimate thing to do is show that $\tilde{\pi}_{G} = \tilde{\pi}$.

(39)

 $\tilde{\pi}_{G}=\tilde{\pi}.$

Proof.

We will use the fact that $\tilde{\pi} : L^1(G) \to B(H)$ is a bounded linear map and therefore commutes with the integral. Let $f, g \in L^1(G)$,

$$\tilde{\pi}(f)\tilde{\pi}(g) = \tilde{\pi}(f * g) \tag{40}$$

$$= \tilde{\pi}\left(\int_{G} f(y)L_{y}g\,dy\right) = \int_{G} f(y)\tilde{\pi}(L_{y}g)\,dy \tag{41}$$

$$= \int_{G} f(y)\pi_{G}(y)\tilde{\pi}(g) \,dy \tag{42}$$

$$=\tilde{\pi}_G(f)\tilde{\pi}(g). \tag{43}$$

Since the choice of f was arbitrary, $\tilde{\pi}(f) = \tilde{\pi}_G(f)$ for all $f \in L^1(G)$.

Let τ and π be unitary representations of G on a Hilbert space H, and let $\tilde{\tau}$ and $\tilde{\pi}$ be corresponding *-representations of L¹(G). If $\tilde{\tau}(f) = \tilde{\pi}(f)$ for all $f \in L^1(G)$, then $\tau(x) = \pi(x)$ for all $x \in G$.

Proof.

For all $u, v \in H$,

$$\langle u | \tilde{\tau}(f) v \rangle = \langle u | \tilde{\pi}(f) v \rangle \implies \int_G f(x) (\langle u | \tau(x) v \rangle - \langle u | \pi(x) v \rangle) \, dx = 0.$$

As $f \in L^1(G)$ is arbitrary, $\langle u | \tau(x)v \rangle = \langle u | \pi(x)v \rangle$ for every $x \in G$ and every $u, v \in H$. Therefore $\tau(x) = \pi(x)$ for every $x \in H$.

Putting all of the results together, we have shown

Theorem

If $(\tilde{\pi}, H)$ is a nondegenerate *-representation of $L^1(G)$, then it arises from a unique unitary representation, π , of G on H.

With the converse

Theorem

Let (π, H) be a unitary representation of G. The map $f \mapsto \tilde{\pi}(f)$ is a nondegenerate *-representation of the group algebra $L^1(G)$ on H.

We have established a one-to-one correspondence between unitary representations of groups and nondegenerate representations of group algebras.

Thank you.