# Analysis on the Euclidean Motion Group 

Ayush Singh

July 23, 2023

## I Isometries of $\mathbb{R}^{n}$

Definition I (isometry). An isometry of $\mathbb{R}^{n}$ is a function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that preserves distances between points, i.e., for $x, y \in \mathbb{R}^{n}$ an isometry satisfies $\|A(x)-A(y)\|=$ $\|x-y\|$ where

$$
\begin{equation*}
\|x\|=\sqrt{\sum_{j=1}^{n} x_{j}^{2}} . \tag{I}
\end{equation*}
$$

We denote the collection of isometries by

$$
I(n)=\left\{A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid\|A(x)-A(y)\|=\|x-y\| \text { for every } x, y \in \mathbb{R}^{n}\right\} .
$$

An isometry is said to fix the origin if it satisfies $A(0)=0$. It can be shown that isometries that keep the origin fixed preserve the dot product on $\mathbb{R}^{n}$.

Proposition I. A function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isometry satisfying $A(0)=0$ if and only if $A$ preserves dot products: $\langle A(x), A(y)\rangle=\langle x, y\rangle$ for all $x, y \in \mathbb{R}^{n}$.

Proof. Let $A(0)=0$. Since $A$ fixes the origin, we have $\|x\|=\|A(x)-A(0)\|=\|A(x)\|$. Since $\|x\|^{2}=\langle x, x\rangle$ we get

$$
\begin{aligned}
& \langle A(x)-A(y), A(x)-A(y)\rangle=\langle x-y, x-y\rangle \\
\Longrightarrow & \langle A(x), A(x)\rangle-2\langle A(x), A(y)\rangle+\langle A(y), A(y)\rangle=\langle x, x\rangle-2\langle x, y\rangle+\langle y, y\rangle \\
\Longrightarrow & \langle A(x), A(y)\rangle=\langle x, y\rangle
\end{aligned}
$$

Conversely, assume that $\langle A(x), A(y)\rangle=\langle x, y\rangle$. We then have

$$
\begin{align*}
\|A(x)-A(y)\|^{2} & =\langle A(x)-A(y), A(x)-A(y)\rangle \\
& =\langle A(x), A(x)\rangle-2\langle A(x), A(y)\rangle+\langle A(y), A(y)\rangle \\
& =\langle x, x\rangle-2\langle x, y\rangle+\langle y, y\rangle \\
& =\langle x-y, x-y\rangle=\|x-y\|^{2} . \tag{2}
\end{align*}
$$

Hence, $A$ is an isometry. Finally, setting $x=y=0$ yields $\|A(0)\|=0$, and therefore $A(0)=0$.

Moreover, we can also show the following
Proposition 2. A function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isometry satisfying $A(0)=0$ if and only if $A$ is linear and orthogonal $A A^{T}=\mathbb{1}$.

Proof. It suffices to show that the map $A$ is linear as orthogonality follows because $A$ preserves inner products:

$$
\begin{equation*}
\langle x, y\rangle=\langle A(x), A(y)\rangle=\left\langle A^{T} A(x), y\right\rangle=\left\langle x, A A^{T}(y)\right\rangle \tag{3}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{n}$, and therefore $A^{T} A=A A^{T}=\mathbb{1}$. Let $\left\{e_{j}\right\}_{j=1, \ldots, n}$ be the standard orthonormal basis for $\mathbb{R}^{n}$ such that $\left\langle e_{j}, e_{k}\right\rangle=\delta_{j k}$. Then $\left\{A\left(e_{j}\right)\right\}$ is also an orthonormal basis for $\mathbb{R}^{n}$ with $\left\langle A\left(e_{j}\right), A\left(e_{k}\right)\right\rangle=\delta_{j k}$. We shall first show that $A(c x)=c A(x)$. Let $x \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$, then $A(c x)$ can be expanded in the orthogonal basis $\left\{A\left(e_{j}\right)\right\}$

$$
\begin{align*}
A(c x) & =\sum_{j=1}^{n}\left\langle A(c x), A\left(e_{j}\right)\right\rangle A\left(e_{j}\right)=\sum_{j=1}^{n}\left\langle c x, e_{j}\right\rangle A\left(e_{j}\right) \\
& =c \sum_{j=1}^{n}\left\langle x, e_{j}\right\rangle A\left(e_{j}\right)=c \sum_{j=1}^{n}\left\langle A(x), A\left(e_{j}\right)\right\rangle A\left(e_{j}\right) \\
& =c A(x) . \tag{4}
\end{align*}
$$

Similarly, for $x, y \in \mathbb{R}^{n}$ we have

$$
\begin{align*}
A(x+y) & =\sum_{j=1}^{n}\left\langle A(x+y), A\left(e_{j}\right)\right\rangle A\left(e_{j}\right)=\sum_{j=1}^{n}\left\langle x, e_{j}\right\rangle A\left(e_{j}\right)+\sum_{j=1}^{n}\left\langle y, e_{j}\right\rangle A\left(e_{j}\right) \\
& =\sum_{j=1}^{n}\left\langle A(x), A\left(e_{j}\right)\right\rangle A\left(e_{j}\right)+\sum_{j=1}^{n}\left\langle A(y), A\left(e_{j}\right)\right\rangle A\left(e_{j}\right) \\
& =A(x)+A(y) . \tag{s}
\end{align*}
$$

For the converse, we only note that, by definition, an orthogonal linear map preserves inner products and therefore by Proposition I it is an isometry which fixes the origin.

The following result shows that any isometry of $\mathbb{R}^{n}$ can be written as a composition of a translation and an orthogonal map.
Theorem I. Every isometry of $\mathbb{R}^{n}$ can be written as $T \circ R$, where $T$ is a translation and $R$ is an orthogonal map.

Proof. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an isometry. For $x \in \mathbb{R}^{n}$ define a translation $T(x):=$ $x+A(0)$ and an orthogonal map $R(x):=A(x)-A(0)$ so that we get $T \circ R(x)=$ $T(A(x)-A(0))=A(x)$. It follows that $R$ as defined above is orthogonal because it is an isometry which fixes the origin, $A(0)=0$.
Conversely, if $T_{w}$ is a translation by a vector $w$ and $R$ is an orthogonal map so that
$A=T_{w} \circ R$, then for every $x, y \in \mathbb{R}$ we have

$$
\begin{equation*}
A(x)-A(y)=(R(x)+w)-(R(y)+w)=R(x)-R(y) \tag{6}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\|A(x)-A(y)\|=\|R(x)-R(y)\|=\|x-y\| \tag{7}
\end{equation*}
$$

Hence, $T_{w} \circ R$ is an isometry.
With these results, we can show that isometries of $\mathbb{R}^{n}$ are invertible and that the inverse of an isometry is also an isometry.

Proposition 3. Isometries of $\mathbb{R}^{n}$ are invertible and the inverse of an isometry is also an isometry.

Proof. Let $A \in I(n)$ be an isometry. By Theorem $\mathrm{I}, A=T \circ R$ where $T(x)=x+A(0)$ and $R$ is an orthogonal map. As $R$ is orthogonal, it is invertible with $R^{-1}=R^{T}$ and we define the inverse of $A$ as

$$
\begin{equation*}
A^{-1}(x)=R^{-1}(x-A(0)) \tag{8}
\end{equation*}
$$

To show that $A^{-1}$ is an isometry, we note that

$$
\begin{equation*}
\left\|A^{-1}(x)-A^{-1}(y)\right\|=\left\|R^{-1}(x-A(0))-R^{-1}(y-A(0))\right\| \tag{9}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{2}$, and since $R^{-1}=R^{T}$ is an orthogonal map and therefore an isometry, we have

$$
\left\|R^{-1}(x-A(0))-R^{-1}(y-A(0))\right\|=\|(x-A(0))-(y-A(0))\|=\|x-y\|
$$

Hence, if $A=T_{w} \circ R$ then $A^{-1}=T_{-R^{-1} w} \circ R^{-1}$.
Hence, with the operation of function composition, the collection $I(n)$ becomes a group. For any two isometries $A, B \in I(n)$ we can write $A=T_{w_{1}} \circ R_{1}$ and $B=T_{w_{2}} \circ R_{2}$ where $R_{j} \in \mathrm{O}(n)$ and $T_{w_{j}}$ are translations. We have the group composition for any $x \in \mathbb{R}^{2}$

$$
\begin{equation*}
A \circ B(x)=R_{1} R_{2}(x)+w_{1}+R_{1}\left(w_{2}\right)=T_{w_{1}+R_{1} w_{2}} \circ R_{1} R_{2} \tag{ıо}
\end{equation*}
$$

And the inverse $A^{-1}=\left(T_{w} \circ R\right)^{-1}=R^{-1} \circ T_{-w}=T_{-R^{-1} w} \circ R^{-1}$, by Proposition 3. Before moving ahead, we quickly note the following result.

Proposition 4. The groups $\mathbb{R}^{n}$ and $\mathrm{O}(n)$ are subgroups of $I(n)$.

## I.I Semidirect products

Definition 2 (semidirect product of groups). Given a group $K$, a group $N$ and an action $\Phi$ of $K$ on $N$ by automorphisms

$$
\begin{equation*}
\Phi_{k}: N \rightarrow N \quad n \mapsto \Phi_{k}(n), \tag{I}
\end{equation*}
$$

the semidirect product $N \rtimes K$ is the set of pairs $(n, k) \in N \times K$ with group composition law

$$
\begin{equation*}
\left(n_{1}, k_{1}\right)\left(n_{2}, k_{2}\right)=\left(n_{1} \Phi_{k_{1}}\left(n_{2}\right), k_{1} k_{2}\right) . \tag{12}
\end{equation*}
$$

Proposition 5. Semidirect product of groups as defined above is indeed a group.
Proof. Let $e_{N} \in N$ and $e_{K} \in K$ be the identities in $N$ and $K$ respectively. Then $\left(e_{N}, e_{K}\right)$ is the identity for $N \rtimes K$

$$
\begin{equation*}
\left(e_{N}, e_{K}\right)(n, k)=\left(e_{N} \Phi_{e_{K}}(n), e_{K} k\right)=(n, k) \tag{r3}
\end{equation*}
$$

and

$$
\begin{equation*}
(n, k)\left(e_{N}, e_{K}\right)=\left(n \Phi_{k}\left(e_{N}\right), k e_{K}\right)=(n, k) . \tag{I4}
\end{equation*}
$$

Given the identity, we can compute the inverse with respect to the group composition law by requiring $(n, k)(n, k)^{-1}=\left(e_{N}, e_{K}\right)$. We can verify that the inverse is given by $(n, k)^{-1}=\left(\Phi_{k^{-1}}\left(n^{-1}\right), k^{-1}\right):$

$$
\begin{align*}
(n, k)^{-1}(n, k) & =\left(\Phi_{k^{-1}}\left(n^{-1}\right), k^{-1}\right)(n, k) \\
& =\left(\Phi_{k^{-1}}\left(n^{-1}\right) \Phi_{k}(n), k^{-1} k\right) \\
& =\left(e_{N}, e_{K}\right) . \tag{ㄷ}
\end{align*}
$$

Finally, we verify that the group multiplication is associative. For $n_{1}, n_{2}, n_{3} \in N$ and $k_{1}, k_{2}, k_{3} \in K$

$$
\begin{align*}
{\left[\left(n_{1}, k_{1}\right)\left(n_{2}, k_{2}\right)\right]\left(n_{3}, k_{3}\right) } & =\left(n_{1} \Phi_{k_{1}}\left(n_{2}\right), k_{1} k_{2}\right)\left(n_{3}, k_{3}\right) \\
& =\left(n_{1} \Phi_{k_{1}}\left(n_{2}\right) \Phi_{k_{1} k_{2}}\left(n_{3}\right), k_{1} k_{2} k_{3}\right) \\
& =\left(n_{1} \Phi_{k_{1}}\left(n_{2} \Phi_{k_{2}}\left(n_{3}\right)\right), k_{1} k_{2} k_{3}\right) \\
& =\left(n_{1}, k_{1}\right)\left(n_{2} \Phi_{k_{2}}\left(n_{3}\right), k_{2} k_{3}\right) \\
& =\left(n_{1}, k_{1}\right)\left[\left(n_{2}, k_{2}\right)\left(n_{3}, k_{3}\right)\right] . \tag{16}
\end{align*}
$$

Hence, $N \rtimes K$ is indeed a group.
Elements of $N \rtimes K$ of the kind ( $n, e_{K}$ ) form a subgroup of $N \rtimes K$ isomorphic to $N$. Similarly, elements of the kind $\left(e_{N}, k\right)$ form a subgroup isomorphic to $K$. In slight abuse of notation, when we shall say that $N$ and $K$ are subgroups of $N \rtimes K$ when we are actually referring to isomorphic copies of $N$ and $K$ inside $N \rtimes K$.

Proposition 6. Let $N \rtimes K$ be a semidirect product of groups. Then $N$ is a normal subgroup of $N \rtimes K$.

Proof. We want to show that $g N g^{-1}=N$ for all $g=(n, k) \in N \rtimes K$. Let $\left(m, e_{K}\right) \in$ $N \rtimes K$ for $m \in N$. We have

$$
\begin{align*}
(n, k)\left(m, e_{K}\right)(n, k)^{-1} & =\left(n \Phi_{k}(m), k\right)\left(\Phi_{k^{-1}}\left(n^{-1}\right), k^{-1}\right) \\
& =\left(n \Phi_{k}(m) \Phi_{k}\left(\Phi_{k^{-1}}\left(n^{-1}\right)\right), k k^{-1}\right) \\
& =\left(n \Phi_{k}(m) n^{-1}, e_{K}\right) \in N \tag{17}
\end{align*}
$$

Thus, given any $m \in N$, we have for any $(n, k) \in N \rtimes K, n^{-1} m n \in N$ and $\Phi_{k^{-1}}\left(n^{-1} m n\right) \in$ $N$ so that $(n, k)\left(\Phi_{k^{-1}}\left(n^{-1} m n\right), e_{K}\right)(n, k)^{-1}=\left(m, e_{K}\right)$ and therefore $\left(m, e_{K}\right) \in g N g^{-1}$ where $g=(n, k)$ and therefore $N \subset g N g^{-1}$. Conversely, any element of $g N g^{-1}$ is of the form in (17) and hence $N=g N g^{-1}$ for all $g \in N \rtimes K$.

The factor $K$ in $N \rtimes K$ need not be normal. We also note that the direct product is a special case of semidirect product when $\Phi_{k}$ is the trivial automorphism for all $k \in K$.

We have an action $\Phi$ of $\mathrm{O}(n)$ on $\mathbb{R}^{n}$ by automorphisms: $\Phi_{R}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given naturally by $x \mapsto R x$. We notice that the group composition law for a semidirect product $\mathbb{R}^{n} \rtimes \mathrm{O}(n)$ is identical to the group composition law (ı) for $I(n)$. Explicitly, for $\left(w_{1}, R_{1}\right),\left(w_{2}, R_{2}\right) \in \mathbb{R}^{n} \rtimes \mathrm{O}(n)$

$$
\begin{equation*}
\left(w_{1}, R_{1}\right)\left(w_{2}, R_{2}\right)=\left(w_{1}+\Phi_{R_{1}}\left(w_{2}\right), R_{1} R_{2}\right)=\left(w_{1}+R_{1} w_{2}, R_{1} R_{2}\right) \tag{18}
\end{equation*}
$$

Moreover, since Theorem i implies that every isometry can be written as a composition of a translation and an orthogonal transformation, we have the following characterization of the isometry group.

Theorem 2. The isometry group $I(n)$ is the semidirect product of $\mathbb{R}^{n}$ and $\mathrm{O}(n)$, i.e., $I(n) \cong$ $\mathbb{R}^{n} \rtimes \mathrm{O}(n)$.

Corollary $\mathbf{I} . \mathbb{R}^{n}$ is a normal subgroup of of the isometriy group $I(n)$.
Let $p: N \rtimes K \rightarrow K$ be the canonical surjection map, i.e., $(n, k) \mapsto k$. Then $p$ is a group homomorphism. We verify this by taking any $\left(n_{1}, k_{1}\right),\left(n_{2}, k_{2}\right) \in N \rtimes K$ and noting that

$$
\begin{align*}
p\left(\left(n_{1}, k_{1}\right)\left(n_{2}, k_{2}\right)\right) & =p\left(n_{1} \Phi_{k_{1}}\left(n_{2}\right), k_{1} k_{2}\right)=k_{1} k_{2} \\
& =p\left(\left(n_{1}, k_{1}\right)\right) p\left(\left(n_{2}, k_{2}\right)\right) . \tag{19}
\end{align*}
$$

Moreover, the kernel of $p$ is $N$. This can be verified by noting that any $\left(n, e_{K}\right)$ is mapped to $e_{K}$ under $p$, therefore $N \subset \operatorname{ker} p$. Conversely, $(n, k) \in \operatorname{ker} p$ implies $k=e_{K}$ and $(n, k)=\left(n, e_{K}\right) \in N$. Now, the first isomorphism theorem gives us $K \cong(N \rtimes K) / N$.

Proposition 7. Let $G=N \rtimes K$ be a semidirect product of groups $N$ and $G$. Then $G / N \cong K$.

Applying the above result to the isometry group gives
Corollary 2. $I(n) / \mathbb{R}^{n} \cong \mathrm{O}(n)$.

## I. 2 Euclidean motion group

Elements of $I(n)$ of the form $T_{w} \circ R$ where $R \in \mathrm{SO}(n)$ are called orientation preserving isometries of $\mathbb{R}^{n}$. Orientation preserving isometries form a subgroup of $I(n)$.

Definition 3 (Euclidean motion group). The Euclidean motion group in n-dimensions, denoted $M(n)$, is the collection of all orientation preserving isometries of $\mathbb{R}^{n}$.

Just like in case of $I(n)$, we have: $M(n) \cong \mathbb{R}^{n} \rtimes \operatorname{SO}(n)$. Moreover, $\mathbb{R}^{n}$ is a normal subgroup of $M(n)$ and if $p: M(n) \rightarrow \mathrm{SO}(n)$ is the canonical surjection map, then $p$ is a homomorphism with $\operatorname{ker}(p)=\mathbb{R}^{n}$ and $\mathrm{SO}(n) \cong M(n) / \mathbb{R}^{n}$.

In the rest of this report we shall focus on the Euclidean motion group in two dimensions, i.e., $n=2$.

In particular, as $\mathbb{R}^{2} \cong \mathbb{C}$ and $S O(2) \cong U(1) \cong \mathbb{T}$, where $\mathbb{T}$ is the I-dimensional torus, we can make the identification $M(2)=\mathbb{C} \rtimes \mathbb{T}$. With this identification $M(2)$ is the group of orientation preserving isometries of $\mathbb{C}$. We shall denote elements of $M(2)$ by $g(z, \alpha)=t(z) \circ r(\alpha)$, where, for $w \in \mathbb{C}, t(z)(w)=w+z$ is a translation and $r(\alpha)(w)=w e^{i \alpha}$ is the action of $\mathrm{U}(1)$ on $\mathbb{C}$.

The Euclidean inner product on $\mathbb{C}$ is given by $\langle z, w\rangle=\operatorname{Re}(z \bar{w})$.
$M(2)$ can be embedded in $\operatorname{GL}(2, \mathbb{C})$ as the subgroup with matrices of the form

$$
M(2)=\left\{\left.\left[\begin{array}{cc}
e^{i \alpha} & z  \tag{20}\\
0 & 1
\end{array}\right] \right\rvert\, \text { for any } \alpha \in \mathbb{R} \text { and } z \in \mathbb{C}\right\}
$$

Hence, $M(2)$ is a linear Lie group. In fact, $I(2)$ is a 3 -dimensional Lie group with two connected components. $M(2)$ is the connected component of $I(2)$ containing the identity.

For future reference, we note the following relations.
I. $r(\alpha) r(\beta)=r(\alpha+\beta) ; r(\alpha)^{-1}=r(-\alpha)$
2. $t(z) t(w)=t(z+w) ; t(z)^{-1}=t(-z)$
3. $g(z, \alpha)=t(z) r(\alpha)$
4. $g(z, \alpha)^{-1}=g(-r(-\alpha) z,-\alpha)$
5. $g(z, \alpha) g(w, \beta)=g(z+r(\alpha) w, r(\alpha+\beta))$

## 2 Irreducible representations of $M(2)$

The compact group $\mathbb{T} \cong \mathbb{R} / 2 \pi \mathbb{Z}$ has the normalized Haar measure $d r=d \alpha / 2 \pi$. We start by looking at a family of unitary representations of $M(2)$.

Theorem 3. Let $a \in \mathbb{R}^{2}$. There exists a unitary representation $\pi_{a}$ of $M(2)$ on $L^{2}(\mathbb{T})$ defined by

$$
\begin{equation*}
\left(\pi_{a}(g) F\right)(x)=e^{i\langle z, x a\rangle} F\left(r(\alpha)^{-1} x\right) \tag{2I}
\end{equation*}
$$

where $g=t(z) r(\alpha)$ and $F \in L^{2}(\mathbb{T})$.

Proof. We verify that $\pi_{a}$ is unitary. For $g=t(z) r(\alpha) \in M(2)$ and $F, F^{\prime} \in L^{2}(\mathbb{T})$

$$
\begin{equation*}
\left\langle\pi_{a}(g) F, \pi_{a}(g) F^{\prime}\right\rangle=\int_{\mathbb{T}} F\left(r^{-1} x\right) \overline{F^{\prime}\left(r^{-1} s\right)} d x \tag{22}
\end{equation*}
$$

and since the measure on $\mathbb{T}$ is left invariant

$$
\begin{equation*}
\left\langle\pi_{a}(g) F, \pi_{a}(g) F^{\prime}\right\rangle=\int_{\mathbb{T}} F(x) \overline{F^{\prime}(x)} d x=\left\langle F, F^{\prime}\right\rangle \tag{23}
\end{equation*}
$$

We also verify that $\pi_{a}$ as defined above is a group homomorphism of $M(2)$ into $G L\left(L^{2}(\mathbb{T})\right.$. Let $g_{1}=t\left(z_{1}\right) r\left(\alpha_{1}\right)$ and $g_{1}=t\left(z_{2}\right) r\left(\alpha_{2}\right)$, then for $F \in L^{2}(\mathbb{T})$

$$
\begin{aligned}
\left(\pi_{a}\left(g_{1}\right) \pi_{a}\left(g_{2}\right) F\right)(x) & =\pi_{a}\left(g_{1}\right) e^{i\left\langle z_{2}, r\left(\alpha_{2}\right)^{-1} x a\right\rangle} F\left(r\left(\alpha_{2}\right)^{-1} x\right) \\
& =e^{i\left(z_{1}+r\left(\alpha_{2}\right) z_{2}, x a\right\rangle} F\left(r\left(\alpha_{1}+\alpha_{2}\right)^{-1} x\right) \\
& =\left(\pi_{a}\left(g_{1} g_{2}\right) F\right)(x) .
\end{aligned}
$$

Finally, we need to show that the mapping $g \mapsto \pi_{a}(g)$ from $M(2)$ to $G L\left(L^{2}(\mathbb{T})\right)$, with strong operator topology on $G L\left(L^{2}(\mathbb{T})\right.$ ), is continuous. It is sufficient to prove that the map is continuous at identity, i.e., given $\epsilon>0$ there exists a neighbourhood $U$ of $e$ in $M(2)$ such that

$$
\begin{equation*}
\left\|\pi_{a}(g) F-F\right\|<\epsilon \quad \text { for any } g \in U . \tag{24}
\end{equation*}
$$

Since the case of $F=0$ is trivial, assume $F \neq 0$. We can assume $\epsilon / 3<\|F\|$, and since $C(\mathbb{T})$ is dense in $L^{2}(\mathbb{T})$, there exists $\phi \in C(\mathbb{T})$ satisfying

$$
\begin{equation*}
\|F-\phi\|<\epsilon / 3 . \tag{25}
\end{equation*}
$$

As $\|F\|>\epsilon / 3, \phi \neq 0$. Since $\phi$ is a continuous function on the compact group $\mathbb{T}$, it is bounded and uniformly continuous and therefore translations of $\phi$ are continuous, i.e., there exists a neighbourhood $V$ of identity in $\mathbb{T}$ such that the left regular representation satisfies

$$
\begin{equation*}
\left\|L_{r} \phi-\phi\right\|_{\infty}<\epsilon / 6 \quad \text { for any } r \in V . \tag{26}
\end{equation*}
$$

Moreover, since $|\langle w, t a\rangle| \leq|w||a|$ for an $t \in \mathbb{T}$, there exists a neighbourhood $W$ of o in $\mathbb{R}^{2}$ such that

$$
\begin{equation*}
\left|e^{i\langle w, t a\rangle}-1\right|<\frac{\epsilon}{6\|\phi\|_{\infty}} \tag{27}
\end{equation*}
$$

for every $w \in W$ and $t \in \mathbb{T}$. Let $U=t(W) \times V$. Then $U$ is a neighbourhood of $e$ in
$M(2)$. If $g=t(z) r(\alpha) \in U$, then we have

$$
\begin{align*}
\left\|\pi_{a}(g) \phi-\phi\right\| & =\sup _{t \in \mathbb{T}}\left|e^{i\langle(z, t a\rangle} \phi\left(r^{-1} t\right)-\phi(t)\right| \\
& \leq \| e^{i\langle z, t a\rangle}\left(\phi\left(r^{-1} t\right)-\phi(t)\left\|_{\infty}+\right\|\left(e^{i\langle z, t a\rangle}-1\right) \phi(t) \|_{\infty}\right. \\
& \leq\left\|L_{r} \phi-\phi\right\|_{\infty}+\left\|e^{i\langle z, t a\rangle}-1\right\|_{\infty}\|\phi\|_{\infty} \\
& <\epsilon / 6+\epsilon / 6=\epsilon / 3 . \tag{28}
\end{align*}
$$

Finally, using the above inequality, (25) and the relations $\left\|\pi_{a}(g) f\right\|=\|f\|,\|\phi\| \leq$ $\|\phi\|_{\infty}$ we have

$$
\begin{align*}
\left\|\pi_{a}(g) F-F\right\| & \leq\left\|\pi_{a}(g) F-\pi_{a}(g) \phi\right\|+\left\|\pi_{a}(g) \phi-\phi\right\|+\|\phi-F\| \\
& <\left\|\pi_{a}(g)(F-\phi)\right\|+\epsilon / 3+\epsilon / 3 \\
& <\epsilon / 3+\epsilon / 3+\epsilon / 3<\epsilon . \tag{29}
\end{align*}
$$

The next result shows that the right regular representation of $\mathbb{T}$ intertwines $\pi_{a}$ with $\pi_{r a}$.

Theorem 4. Let $R_{r}(r \in \mathbb{T})$ be the right regular representation of $\mathbb{T}$. Then we have

$$
\begin{equation*}
R_{r} \circ \pi_{a}(g)=\pi_{r a}(g) \circ R_{r} \tag{30}
\end{equation*}
$$

Proof. Let $r_{0} \in \mathbb{T}, g=t(z) r \in M(2)$ and $F \in L^{2}(\mathbb{T})$, we have

$$
\begin{align*}
\left(R_{r_{0}} \pi_{a}(g) F\right)(t) & =\pi_{a}(g) F\left(t r_{0}\right)=e^{i\left\langle z, a t r_{0}\right\rangle} F\left(r^{-1} t r_{0}\right) \\
& =\pi_{a}(g) F\left(t r_{0}\right)=\left(\pi_{a}(g) R_{r_{0}}\right) F(t) \tag{31}
\end{align*}
$$

Since $R_{r}$ is unitary and always non-trivial, the above result shows that if $|a|=|b|$, then $\pi_{a}$ and $\pi_{b}$ are unitarily equivalent, i.e., $\pi_{a} \cong \pi_{b}$, and it is sufficient to study representations $\pi_{a}$ for which $a \geq 0$.

An explicit computation of the representation in Theorem 3 gives
Proposition 8. For $g=t\left(\rho e^{i \phi}\right) r(\alpha)$ the unitary operator $\pi_{a}(g)(a \geq 0)$ is represented by

$$
\begin{equation*}
\left(\pi_{a}(g) F\right)(\theta)=e^{i a \rho \cos (\phi-\theta)} F(\theta-\alpha) . \tag{32}
\end{equation*}
$$

Proof. As $\langle z, a\rangle=\operatorname{Re} z \bar{a}$, we have $\langle z, r(\theta) a\rangle$. With the given $g$, we have $z=\rho e^{i \theta}$ and

$$
\begin{equation*}
\langle z, r(\theta) a\rangle=\operatorname{Re}\left(a \rho e^{i(\phi-\theta)}\right)=a \rho \cos (\phi-\theta) . \tag{33}
\end{equation*}
$$

By Theorem 3 we get

$$
\begin{align*}
\left(\pi_{a}(g) F\right)(\theta) & =e^{i\langle z, r(\theta) a\rangle} F(\theta-\alpha) \\
& =e^{i a \rho \cos (\phi-\theta)} F(\theta-\alpha) \tag{34}
\end{align*}
$$

Proposition 9. Let $F \in L^{2}(\mathbb{T})$. Then $\pi_{a}(r) F=F$ for every $r \in \mathbb{T}$ if and only if $F$ is a constant function.

Proof. We notice that $\pi_{a}(r)=L_{r}$, the left regular representation of $\mathbb{T}$ for every $r \in \mathbb{T}$. Write $F(\theta)=\sum_{n \in \mathbb{Z}} c_{n} \chi_{n}(\theta)$ and

$$
\begin{equation*}
\tau_{a}(r(\alpha))\left(\sum_{n \in \mathbb{Z}} c_{n} \chi_{n}\right)(\theta)=\sum_{n \in \mathbb{Z}} c_{n} e^{-i n \alpha} \chi_{n}(\theta) \tag{35}
\end{equation*}
$$

Hence, $F \in L^{2}(\mathbb{T})$ satisfies $\pi_{a}(g) F=F$ for every $\theta \in \mathbb{T}$ if and only if $c_{n}=e^{-i n \alpha} c_{n}$ for every $n \in \mathbb{Z}$. This means $c_{n}=0$ for $n \neq 0$ and $F=c_{0} \chi_{0}=c_{0}$, a constant.

We now give a converse to Theorem 4.
Lemma i. Let $\phi_{a}(g)=\left\langle\pi_{a}(g) 1,1\right\rangle$, where 1 denotes the constant function that is $I$ everywhere on $\mathbb{T}$. Then we have $\phi_{a}(g)=J_{0}(a \rho)$ for $g=t\left(\rho e^{i \phi}\right) r(\alpha)$, where $J_{0}$ is the Bessel function of order o.

Proof. By Proposition 8 we have

$$
\begin{align*}
\phi_{a}\left(t\left(\rho e^{i \phi}\right) r(\alpha)\right) & =\left\langle\pi_{a}\left(t\left(\rho e^{i \phi}\right) r(\alpha) 1,1\right\rangle\right. \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i a \rho \cos (\phi-\theta)} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i a \rho \cos \theta} d \theta \\
& =J_{0}(a \rho) \tag{36}
\end{align*}
$$

where the last equality follows from the definition of the Bessel function.
Theorem 5. Let $a, b \in \mathbb{R}^{2}$. Then $\pi_{a}$ is equivalent to $\pi_{b}$ if and only if $|a|=|b|$.
Proof. It is sufficient to prove that if $\pi_{a} \cong \pi_{b}$ for $a, b \geq 0$, then $a=b$.
If $\pi_{a} \cong \pi_{b}$, then there exists a unitary operator $T$ on $L^{2}(\mathbb{T})$ such that $T \pi_{a}(g)=$ $\pi_{b}(g) T$ for all $g \in M(2)$. If we denote by 1 the constant function with value i on $\mathbb{T}$, then $\left(\pi_{b}(r) T\right)(1)=\left(T \pi_{a}(r)\right)(1)=T(1)$ for every $r \in \mathbb{T}$. Hence, $T(1)=c$, a
constant, by Proposition 9. Since $T$ is unitary, $|c|=1$. We have

$$
\begin{align*}
\phi_{a}(g) & \left.=\left\langle\pi_{a}(g) 1,1\right\rangle=\left\langle T \pi_{( } g\right) 1, T 1,\right\rangle \\
& =\left\langle\pi_{b}(g) T 1, T 1\right\rangle=|c|^{2}\left\langle\pi_{b}(g) 1,1\right\rangle \\
& =\phi_{b}(g) \quad \text { for any } g \in M(2) . \tag{37}
\end{align*}
$$

By Lemma I , we get

$$
\begin{equation*}
J_{0}(a \rho)=J_{0}(b \rho) \quad \text { for every } \rho \in \mathbb{R} . \tag{38}
\end{equation*}
$$

We know that

$$
\begin{equation*}
J_{0}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i x \cos \theta} d \theta \tag{39}
\end{equation*}
$$

differentiating twice gives

$$
\begin{equation*}
J_{0}^{\prime \prime}(0)=\frac{-1}{2 \pi} \int_{0}^{2 \pi} \cos ^{2} \theta d \theta<0 \tag{40}
\end{equation*}
$$

If we put $f_{a}(x)=J_{0}(a x)$, then $f_{a}^{\prime \prime}(0)=a^{2} J_{0}^{\prime \prime}(0)$. As $J_{0}(a \rho)=J_{0}(b \rho)$ we have $a^{2} J_{0}^{\prime \prime}(0)=$ $b^{2} J_{0}^{\prime \prime}(0)$ and hence $a^{2}=b^{2}$.
We have shown that if $\pi_{a} \cong \pi_{b}$ then $|a|=|b|$.
This next result shows that the representations $\pi_{a}$ are irreducible for $|a|>0$.
Lemma 2. The limit

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left\|\frac{e^{i a x f(\theta)}-1}{x}-i a f(\theta)\right\|=0 \tag{41}
\end{equation*}
$$

holds.
Proof.

$$
\begin{equation*}
\left\|\frac{e^{i a x f(\theta)}-1}{x}-i a f(\theta)\right\|_{\infty}=\frac{1}{|x|}\left\|e^{i a x f(\theta)}-(1+i a x f(\theta))\right\|_{\infty} \tag{42}
\end{equation*}
$$

By Taylor expansion of $e^{x}$

$$
\begin{equation*}
e^{i a x f(\theta)}=1+\operatorname{iaxf}(\theta)+\frac{(\operatorname{iax} f(\theta))^{2}}{2!}+o\left(x^{3}\right), \tag{43}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left\|\frac{e^{i a x f(\theta)}-1}{x}-\operatorname{iaf}(\theta)\right\|_{\infty} \leq \frac{1}{|x|}\left\|\frac{(i a x f(\theta))^{2}}{2}\right\| \infty \leq \frac{a^{2}}{2}|x| . \tag{44}
\end{equation*}
$$

Hence, the limit holds.
Theorem 6. If $|a|>0$, the unitary representation $\left(\pi_{a}, L^{2}(\mathbb{T})\right)$ is irreducible.

Proof. By Theorem 4, we can assume $a>0$ without loss of generality. To show irreducibility, it is sufficient to prove that if a projection operator $P$ on $L^{2}(\mathbb{T})$ satisfies

$$
\begin{equation*}
P \pi_{a}(g)=\pi_{a}(g) P \quad \text { for every } g \in M(2) \tag{45}
\end{equation*}
$$

then $P=0$ or $P=\mathbb{1}$, i.e., $L^{2}(\mathbb{T})$ has no non-trivial invariant subspaces.
For $n \in \mathbb{Z}$, put $\chi_{n}(\theta)=e^{i n \theta}$ and define $f_{n}:=P \chi_{n}$. For $g=t(0) r(\alpha) \in M(2)$ we have $\left(\pi_{a}(r(\alpha)) f_{n}\right)(\theta)=f_{n}(\theta-\alpha)$ and therefore

$$
\begin{align*}
f_{n}(\theta-\alpha) & =\left(\pi_{a}(r(\alpha)) P \chi_{n}\right)(\theta)=\left(P \pi_{a}(r(\alpha))\right)(\theta) \\
& =P \chi_{n}(\theta-\alpha)=P\left(e^{i n(\theta-\alpha)}\right)=e^{-i n \alpha} f_{n}(\theta) \tag{46}
\end{align*}
$$

With $\theta=\alpha$, we conclude $f_{n}(\alpha)=c_{n} e^{i n \alpha}$, where $c_{n}=f_{n}(0)$ is a constant, for every $n \in \mathbb{Z}$. For $x \in \mathbb{R}$ we have (by Proposition 8 )

$$
\begin{align*}
P\left(e^{i a x \cos \theta} e^{i n \theta}\right) & =\left(P \pi_{a}(t(x))\right)\left(e^{i n \theta}\right)=\left(\pi_{a}(t(x)) P \chi_{n}\right)(\theta) \\
& =c_{n}\left(\pi_{a}(t(x)) \chi_{n}\right)(\theta)=c_{n} e^{i a x \cos \theta} e^{i n \theta} \tag{47}
\end{align*}
$$

and therefore

$$
\begin{equation*}
P\left(\frac{e^{i a x \cos \theta}-1}{x} e^{i n \theta}\right)=c_{n} \frac{e^{i a x \cos \theta}-1}{x} e^{i n \theta} \tag{48}
\end{equation*}
$$

By Lemma 2 we get $P\left(e^{i n \theta} \cos \theta\right)=c_{n} e^{i n \theta} \cos \theta$. Similarly, we have $P\left(e^{i a x \sin \theta} e^{i n \theta}\right)=$ $c_{n} e^{i a x \cos \theta} e^{i n \theta}$ and by Lemma 2 we get $P\left(e^{i n \theta} \sin \theta\right)=c_{n} e^{i n \theta} \sin \theta$. Together these prove

$$
\begin{align*}
P \chi_{n+1} & =P\left(e^{i \theta} e^{i n \theta}\right)=P\left(e^{i n \theta} \cos \theta+i e^{i n \theta} \sin \theta\right) \\
& =c_{n} e^{i n \theta} \cos \theta+i c_{n} e^{i n \theta} \sin \theta=c_{n} \chi_{n+1} \quad \text { for every } n \in \mathbb{Z} \tag{49}
\end{align*}
$$

Hence, $c_{n+1}=c_{n}$ and $c_{n}=c_{0}$ for every $n \in \mathbb{Z}$. Since $\chi_{n}$ is an orthonormal basis for $\mathbb{T}$, we get $P=c_{0} \mathbb{1}$, and as $P$ is a projection operator $P^{2}=P \Longrightarrow c_{0}^{2}=c_{0}$, therefore $c_{0}=0$ or $c_{0}=1$. We have proved that $P=0$ or $P=\mathbb{1}$.

The family of representations $P=\left\{\tau_{a} \mid a>0\right\}$ is called the principal series of irreducible representations of $M(2)$.

All representations in the principal series are infinite dimensional. We will now look at some one-dimensional representations of $M(2)$. Let $p: M(2) \rightarrow \mathbb{T}$ be the canonical projection of $M(2)=\mathbb{C} \rtimes \mathbb{T}$ onto $\mathbb{T}$. Any irreducible representation $\chi$ of $\mathbb{T}$ defines a unitary representation $\chi \circ p$ of $M(2)$. The unitary dual of $\mathbb{T}$ is

$$
\begin{equation*}
\widehat{\mathbb{T}}=\left\{\chi_{n}: r(\alpha) \mapsto e^{i n \alpha} \mid n \in \mathbb{Z}\right\} \tag{50}
\end{equation*}
$$

All irreducible representations of $\mathbb{T}$ are one-dimensional, therefore the representations $\chi_{n} \circ p$ of $M(2)$ are also irreducible.

Remarkably, these one-dimensional representations are the only irreducible unitary representations of $M(2)$ other than the principal series.

Theorem 7. Any irreducible unitary representation $\pi$ of the Euclidean motion group $M(2)$ is equivalent to one of the elements in the set

$$
\begin{equation*}
\widehat{M(2)}=\left\{\pi_{a} \mid a>0\right\} \cup\left\{\chi_{n} \circ p \mid n \in \mathbb{Z}\right\} . \tag{sI}
\end{equation*}
$$

No two elements of $\widehat{M(2)}$ are equivalent to each other.

## 3 Fourier transforms

Proposition io. Let $g=t(z) r(\alpha)=t(x+i y) r(\alpha)$. Then $d g=d z d r=d x d y d r$ is a left invariant Haar measure on M(2). It is also right invariant and $M(2)$ is a unimodular group.

Proof. We have $t\left(z_{1}\right) r_{1} t\left(z_{2}\right) r_{2}=t\left(z_{1}+r_{1} z_{2}\right) r_{1} r_{2}$ and the Lebesgue measure $d z$ on $\mathbb{C}$ is invariant under rigid motion $z_{1} \mapsto z_{1}+r_{1} z_{2}$. We have already seen that $d r$ is the Haar measure on $\mathbb{T}$, therefore we have $d\left(g_{1} g_{2}\right)=d g_{2}$. Similarly, $d\left(g_{2}, g_{1}\right)=d g_{2}$ and $M(2)$ is a unimodular group.

The measure on $M(2)$ given by $d g=d z d \alpha /(2 \pi)^{2}=d m(z) d r$ is called the normalized Haar measure on $G$.
Definition 4 (Fourier transform). The Fourier transform $\widehat{f}$ of a function $f \in L^{1}(M(2))$ is a function on $R_{+}^{*}=(0, \infty)$ with values in $B\left(L^{2}(\mathbb{T})\right.$ ), the Banach space of bounded linear operators on $L^{2}(\mathbb{T})$, defined by

$$
\begin{equation*}
\widehat{f}(a)=\int_{M(2)} f(g) \pi_{a}\left(g^{-1}\right) d g \quad \text { for } a>0, \tag{52}
\end{equation*}
$$

where $\pi_{a}$ is a principal series unitary representation.
Proposition II. Iff and $h$ are integrable function on $M(2)$, then we have
I. $\|\widehat{f}(a)\| \leq\|f\|_{1}$, for any $a>0$
2. $\widehat{f * b}=\widehat{b} \hat{f}$, and
3. $\widehat{(f *)}(a)=(\widehat{f}(a))^{*}$

Proof. I. Let $u \in L^{2}(\mathbb{T})$. We have

$$
\begin{equation*}
\|\widehat{f}(a) u\|=\left\|\int_{M(2)} f(g) \pi_{a}\left(g^{-1}\right) u d g\right\| \leq \int_{M(2)} \mid f(g)\left\|\pi_{a}\left(g^{-1}\right) u\right\| d g \tag{53}
\end{equation*}
$$

and since $\pi_{a}\left(g^{-1}\right)$ is unitary, and $d g$ is the normalized Haar measure

$$
\begin{equation*}
\|\widehat{f}(a) u\| \leq\|f\|_{1}\|u\| . \tag{54}
\end{equation*}
$$

2. We use Fubini's theorem and right invariance of $d g$ to simplify $\widehat{f * b}(a)$

$$
\begin{align*}
\widehat{f * h}(a) & =\int_{M(2)} f * b(g) \pi_{a}\left(g^{-1}\right) d g \\
& =\int_{M(2)}\left[\int_{M(2)} f\left(g s^{-1}\right) b(s) d s\right] \pi_{a}\left(g^{-1}\right) d g \\
& =\int_{M(2)}\left[\int_{M(2)} f\left(g s^{-1}\right) \pi_{a}\left(g^{-1}\right) d g\right] h(s) d s \\
& =\int_{M(2)}\left[\int_{M(2)} f(g) \pi_{a}\left(s^{-1} g^{-1}\right) d g\right] b(s) d s \\
& =\int_{M(2)} b(s) \pi_{a}\left(s^{-1}\right) d s \int_{M(2)} f(g) \pi_{a}\left(g^{-1}\right) d g \\
& =\widehat{b}(a) \widehat{f}(a)=\widehat{b} \widehat{f}(a) . \tag{5s}
\end{align*}
$$

3. Let $u, v \in L^{2}(\mathbb{H})$. We have

$$
\begin{align*}
\langle\widehat{f *}(a) u, v\rangle & =\int_{M(2)}\left\langle f^{*}(g) \pi_{a}\left(g^{-1}\right) u, v\right\rangle d g \\
& =\int_{M(2)}\left\langle\overline{f\left(g^{-1}\right)} \pi_{a}\left(g^{-1}\right) u, v\right\rangle d g \\
& =\int_{M(2)}\left\langle u, f\left(g^{-1}\right) \pi_{a}(g) v\right\rangle d g \\
& =\langle u, \widehat{f}(a) v\rangle=\left\langle(\widehat{f}(a))^{*} u, v\right\rangle \tag{56}
\end{align*}
$$

Hence $\widehat{f *}(a)=\widehat{f}(a)^{*}$.

We define the notion of a rapidly decreasing function analogously to the case of $\mathbb{R}^{n}$.
Definition 5 . A complex valued $C^{\infty}$-function $f$ on $M(2)$ is called rapidly decreasing if for any $N \in \mathbb{N}$ and $m \in \mathbb{N}^{3}$ we have

$$
\begin{equation*}
p_{N, m}(f)=\sup _{\alpha \in \mathbb{R}, z \in \mathbb{C}}\left|\left(1+|z|^{2}\right)^{N}\left(D^{m} f\right)(z, \alpha)\right|<\infty, \tag{57}
\end{equation*}
$$

where

$$
\begin{equation*}
D^{m}=\left(\frac{1}{i} \frac{\partial}{\partial x}\right)^{m_{1}}\left(\frac{1}{i} \frac{\partial}{\partial y}\right)^{m_{2}}\left(\frac{1}{i} \frac{\partial}{\partial \alpha}\right)^{m_{3}} . \tag{58}
\end{equation*}
$$

The vector space of all rapidly decreasing functions on a group $G$ is denoted by $\mathscr{S}(G)$. The following result shows that $\widehat{f}(a)$ is an integral operator on $L^{2}(\mathbb{T})$ with its kernel given by

$$
\begin{equation*}
k_{f}^{a}(s, r)=\int_{\mathbb{R}^{2}} f\left(z, r s^{-1}\right) e^{-i\langle z, r a\rangle} d m(z) . \tag{59}
\end{equation*}
$$

Proposition 12. If $f$ is a rapidly decreasing function on $M(2)$ and $k_{f}^{a}$ is as defined above, then we have

$$
\begin{equation*}
(\widehat{f}(a) F)(s)=\int_{\mathbb{T}} k_{f}^{a}(s, r) F(r) d r \tag{6o}
\end{equation*}
$$

for any $a>0$ and $F \in L^{2}(\mathbb{T})$.
Proof. Let $F, F^{\prime} \in L^{2}(\mathbb{T})$ and $g \in M(2)$ with $g=t(z) r$ and $g^{-1}=t\left(-r^{-1} z\right) r^{-1}$. We have

$$
\begin{aligned}
\left\langle\widehat{f}(a) F, F^{\prime}\right\rangle & =\int_{M(2)} f(g)\left\langle\pi_{a}\left(g^{-1}\right) F, F^{\prime}\right\rangle d g \\
& =\int_{\mathbb{R}^{2}} \int_{\mathbb{T}} f(z, r)\left\langle\pi_{a}\left(t\left(-r^{-1} z\right) r^{-1}\right) F, F^{\prime}\right\rangle d m(z) d r \\
& =\int_{\mathbb{R}} \int_{\mathbb{T}} f(z, r)\left[\int_{\mathbb{T}} e^{-i\left\langle r^{-1} z, s a\right\rangle} F(r s) \overline{F^{\prime}(s)} d s\right] d m(z) d r \\
& =\int_{\mathbb{T}} \int_{\mathbb{T}}\left[\int_{\mathbb{R}^{2}} f\left(z, r s^{-1}\right) e^{-i\langle z, r a\rangle} d m(z)\right] F(r) \overline{F^{\prime}(s)} d s d r \\
& =\int_{\mathbb{T}}\left[\int_{\mathbb{T}} k_{f}^{a}(s, r) F(r) d r\right] \overline{F^{\prime}(s)} d s .
\end{aligned}
$$

If we denote the ordinary Fourier transform of $z \mapsto f(z, r)$ by $\tilde{f}(\xi, r)$ :

$$
\begin{equation*}
\tilde{f}(\xi, r)=\int_{\mathbb{R}^{2}} f(z, r) e^{-i\langle z, \xi\rangle} d m(z) \tag{6I}
\end{equation*}
$$

the kernel $k_{f}^{a}$ is given by

$$
\begin{equation*}
k_{f}^{a}(s, r)=\tilde{f}\left(r a, r s^{-1}\right) \tag{62}
\end{equation*}
$$

3.1 Fourier inversion formula

Definition 6. A bounded linear operator $A$ on a separable Hilbert space $H$ is said to be of trace class iffor any orthonormal basis $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ of $H$, the series

$$
\begin{equation*}
\sum_{n \in \mathbb{N}}\left\langle A \phi_{n}, \phi_{n}\right\rangle \tag{63}
\end{equation*}
$$

converges to a finite sum which is independent of the choice of $\left(\phi_{n}\right)$.
The sum in (63) is called the trace of $A$ and is denoted by $\operatorname{Tr} A$.
If $A$ is of trace class then the series (63) converges absolutely, because the sum is invariant under a change of ordering of $\phi_{n}$ s.

The following result gives a sufficient condition for an operator to be of trace class.
Proposition 13. Let $H$ be a separable Hilbert space. If a bounded linear operator $A$ on
$H$ satisfies

$$
\begin{equation*}
\sum_{n, m \in \mathbb{N}}\left|\left\langle A \phi_{n}, \phi_{m}\right\rangle\right|<\infty \tag{64}
\end{equation*}
$$

for a fixed orthonormal basis $\left(\phi_{n}\right)_{n \in \mathbb{N}}$, then $A$ is of trace class. Moreover, if $U$ and $V$ are two bounded operators on $H$, then $U A V, A V U$, and $V U A$ are of trace class and have the same trace.

Proof. Let $a_{m, n}=\left\langle A \phi_{m}, \phi_{n}\right\rangle, u_{m, n}=\left\langle U \phi_{m}, \phi_{n}\right\rangle$, and $v_{n, m}=\left\langle V \phi_{m}, \phi_{n}\right\rangle$. We have

$$
A \phi_{m}=\sum_{n=0}^{\infty} a_{m, n} \phi_{n}, \quad U \phi_{m}=\sum_{n=0}^{\infty} u_{m, n} \phi_{n} \quad \text { and } \quad V \phi_{m}=\sum_{n=0}^{\infty} v_{m, n} \phi_{n} .
$$

Hence

$$
\begin{equation*}
U A V \phi_{m}=\sum_{n, k, l=0}^{\infty} u_{m, n} a_{n, k} v_{k, l} \phi_{l}, \tag{65}
\end{equation*}
$$

and with Schwarz inequality in $l^{2}$ gives

$$
\begin{align*}
\sum_{m=0}^{\infty}\left|u_{m, n} a_{n, k} v_{k, m}\right| & \leq\left|a_{n, k}\right|\left(\sum_{m=0}^{\infty}\left|u_{m, n}\right|^{2}\right)^{1 / 2}\left(\sum_{m=0}^{\infty}\left|u_{k, m}\right|^{2}\right)^{1 / 2} \\
& =\left|a_{n, k}\right|| | U^{*} \phi_{n}| || | V^{*} \phi_{k}| | j \leq\left|a_{n, k}\right|| | U^{*}| || | V^{*} \| \tag{66}
\end{align*}
$$

and finally we have

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left|\left\langle U A V \phi_{m}, \phi_{m}\right\rangle\right| \leq \sum_{n, k=0}^{\infty}\left|a_{n, k}\right|| | U^{*}| || | V^{*} \|<\infty, \tag{67}
\end{equation*}
$$

by hypothesis. Hence, the series $\sum_{m, n, k} u_{m, n} a_{n, k} v_{k, m}$ converges absolutely and we can change the order of terms freely. We use Parseval's equality to get

$$
\begin{align*}
\sum_{m}\left\langle U A V \phi_{m}, \phi_{n}\right\rangle & =\sum_{m}\left\langle V \phi_{m}, A^{*} U^{*} \phi_{n}\right\rangle \\
& =\sum_{m, n}^{m}\left\langle V \phi_{m}, \phi_{n}\right\rangle\left\langle\phi_{n}, A^{*} U^{*} \phi_{m}\right\rangle \\
& =\sum_{m, n, k}\left\langle V \phi_{m}, \phi_{n}\right\rangle\left\langle A \phi_{n}, \phi_{k}\right\rangle\left\langle U \phi_{k}, \phi_{m}\right\rangle \\
& =\sum_{k}\left\langle A V U \phi_{k}, \phi_{k}\right\rangle=\sum_{n}\left\langle V U A \phi_{n}, \phi_{n}\right\rangle . \tag{68}
\end{align*}
$$

Let $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ be another orthonormal basis of $H$, then the operator $W$, defined by $W \phi_{n}=\psi_{n}$ is unitary and

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left\langle U A V \psi_{m}, \psi_{m}\right\rangle=\sum_{m=0}^{\infty}\left\langle U A V \phi_{m}, \phi_{m}\right\rangle \tag{69}
\end{equation*}
$$

Hence, $U A V$ is of trace class, and in particular, putting $U=V=\mathbb{1}$ shows that $A$ is of trace class. Similarly, $A V U$ and $V U A$ are also of trace class and (68) shows that $\operatorname{Tr}(U A V)=\operatorname{Tr}(A V U)=\operatorname{Tr}(V U A)$.

Proposition 14. If $k(\theta, \phi)$ is a $C^{2}$-function on $\mathbb{T}^{2}$, then the Fourier series

$$
\begin{equation*}
\sum_{m, n \in \mathbb{Z}} a_{m, n} e^{i(m \theta+n \phi)} \tag{70}
\end{equation*}
$$

of $k$, where

$$
\begin{equation*}
a_{m, n}=\frac{1}{(2 \pi)^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} k(\theta, \phi) e^{-i(m \theta+n \phi)} d \theta d \phi, \tag{71}
\end{equation*}
$$

converges absolutely and uniformly.
Proposition I5. Ifk $(\theta, \phi)$ is a $C^{2}$-function on $\mathbb{T}^{2}$, then the operator $L$ on $L^{2}(\mathbb{T})$ defined by

$$
\begin{equation*}
(L F)(\theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} k(\theta, \phi) F(\phi) d \phi \tag{72}
\end{equation*}
$$

is of trace class with trace

$$
\begin{equation*}
\operatorname{Tr} L=\frac{1}{2 \pi} \int_{0}^{2 \pi} k(\theta, \theta) d \theta \tag{73}
\end{equation*}
$$

Proof. Let $\chi_{n}(\theta)=e^{i n \theta}$, then $\left(\chi_{n}\right)_{n \in \mathbb{Z}}$ is an orthonormal basis of $L^{2}(\mathbb{T})$. By the previous proposition, the Fourier series of $k$ converges and uniformly. We have

$$
\begin{equation*}
\left\langle L \chi_{m}, \chi_{n}\right\rangle=\frac{1}{(2 \pi)^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} k(\theta, \phi) e^{i(m \phi-n \theta)} d \phi d \theta=a_{m,-n} \tag{74}
\end{equation*}
$$

and it follows that

$$
\begin{equation*}
\sum_{m, n \in \mathbb{Z}}\left|\left\langle L \chi_{m}, \chi_{n}\right\rangle\right|<\infty \tag{75}
\end{equation*}
$$

and by Proposition I3, $L$ is of trace class. As the series $k(\theta, \theta)$ converges uniformly on $\mathbb{T}$, we can integrate it term by term and get

$$
\begin{align*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} k(\theta, \theta) d \theta & =\sum_{m, n \in \mathbb{Z}} a_{m, n} \int_{0}^{2 \pi} e^{i(m+n) \theta} d \theta \\
& =\sum_{m, n \in \mathbb{Z}} a_{m, n} \delta_{m+n, 0} \\
& =\sum_{m \in \mathbb{Z}} a_{m,-m}=\sum_{m \in \mathbb{Z}}\left\langle L \chi_{m}, \chi_{m}\right\rangle=\operatorname{Tr} L . \tag{76}
\end{align*}
$$

The above series of propositions culminates in the Fourier inversion formula for rapidly decreasing functions.

Theorem 8 (inversion formula). Any function $f \in \mathscr{S}(M(2))$ may be recovered from its Fourier transform $\widehat{f}$ by the formula

$$
\begin{equation*}
f(g)=\int_{0}^{\infty} \operatorname{Tr}\left(\pi_{a}(g) \widehat{f}(a)\right) a d a . \tag{77}
\end{equation*}
$$

In particular, $\pi_{a}(g) \hat{f}(a)$ and $\widehat{f}(a)$ are of trace class.
Proof. By Proposition I2 $\widehat{f}(a)$ can be seen as an integral operator with a smooth kernel, and therefore we can use Proposition is to say that $\widehat{f}(a)$ is of trace class. Let $g=t(z) u$ for $u \in \mathbb{T}$; then $\pi_{a}(g) \widehat{f}(a)$ is an integral operator

$$
\begin{align*}
\left(\pi_{a}(g) \widehat{f}(a) F\right)(x) & =e^{i\langle z, x a\rangle}(\widehat{f}(a) F)\left(u^{-1} s\right) \\
& =\int_{\mathbb{T}} e^{i\langle z, x a\rangle} k_{f}^{a}\left(u^{-1} x, r\right) F(r) d r \\
& =\int_{\mathbb{T}} e^{i\langle z, x a\rangle} \widetilde{f}\left(r a, r x^{-1} u\right) F(r) d r \tag{78}
\end{align*}
$$

with kernel $m_{f}^{a}(g ; x, r)=e^{i\langle z, x a\rangle} \tilde{f}\left(r a, r s^{-1} u\right)$. By Proposition 15 ,

$$
\begin{align*}
\operatorname{Tr}\left(\pi_{a}(g) \hat{f}(a)\right) & =\int_{\mathbb{T}} m_{f}^{a}(g ; r, r) d r \\
& =\int_{\mathbb{T}} e^{i\langle z, r a\rangle} \tilde{f}(r a, u) d r \tag{79}
\end{align*}
$$

For fixed $r$, the function $f_{r}: z \mapsto f(z, r)$ is a rapidly decreasing on $\mathbb{R}^{2}$, and

$$
\begin{equation*}
\tilde{f}(a, r)=\int_{\mathbb{R}}^{2} f(z, r) e^{-i\langle z, a\rangle} d m(z) \tag{8o}
\end{equation*}
$$

is the Fourier transform on $\mathbb{R}^{2}$; hence, we can use the inversion formula for $f_{r} \in \mathscr{S}\left(\mathbb{R}^{2}\right)$ to get

$$
\begin{align*}
f(g)=f(z, u) & =\int_{\mathbb{R}^{2}} \tilde{f}(\xi, u) e^{i\langle z, \xi\rangle} d m(\xi) \\
& =\int_{0}^{\infty} \int_{\mathbb{T}} \tilde{f}(r a, u) e^{i\langle z, r a\rangle} a d a d r \\
& =\int_{0}^{\infty} \operatorname{Tr}\left(\pi_{a}(g) \hat{f}(a)\right) a d a, \tag{8r}
\end{align*}
$$

where in the second line we transformed to polar coordinates, and used Fubini's theorem to get to the last line by integrating over $\mathbb{T}$.

Proposition 16. If $f$ and $h$ belong to $\mathscr{S}(M(2))$, then $f * h$ and $f^{*}(g)=\overline{f\left(g^{-1}\right)}$ also belong to $\mathscr{S}(M(2))$.

Next, we want to prove the Parseval equality for Fourier transforms.

### 3.2 Parseval identity

Let $H_{1}$ and $H_{2}$ be two separable Hilbert spaces. The set of bounded linear operators from $H_{1}$ into $H_{2}$ is denoted by $B\left(H_{1}, H_{2}\right)$. Let $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ be an orthonormal basis of
$H_{1}$. For any element $A$ of $B\left(H_{1}, H_{2}\right)$ put

$$
\begin{equation*}
\|A\|_{2}^{2}=\sum_{n \in \mathbb{N}}\left\|A \phi_{n}\right\|^{2} \tag{82}
\end{equation*}
$$

Let $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ be an orthonormal basis of $H_{2}$. If $\left(\phi_{n}^{\prime}\right)_{n \in \mathbb{N}}$ is an orthonormal basis of $H_{1}$, by Parseval's equality we have

$$
\begin{align*}
\sum_{n \in \mathbb{N}}\left\|A \phi_{m}\right\|^{2} & =\sum_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}}\left|\left\langle A \phi_{n}, \psi_{m}\right\rangle\right|^{2}=\sum_{m \in \mathbb{N}}\left\|A^{*} \psi_{m}\right\|^{2} \\
& =\sum_{m \in \mathbb{N}} \sum_{n \in \mathbb{N}}\left|\left\langle A^{*} \psi_{m}, \phi_{n}^{\prime}\right\rangle\right|^{2}=\sum_{n \in \mathbb{N}}\left\|A \phi_{n}^{\prime}\right\|^{2} \tag{83}
\end{align*}
$$

Hence, $\|A\|_{2}$ is independent of the choice of basis $\left(\phi_{n}\right)$. Moreover, the above calculation also shows that $\|A\|_{2}=\left\|A^{*}\right\|_{2}$.

Definition 7. An operator $A \in B\left(H_{1}, H_{2}\right)$ is called a Hilbert-Schmidt operator if $\|A\|_{2}<\infty$. The set of Hilbert-Schmidt operators is denoted by $B_{2}\left(H_{1}, H_{2}\right)$.
$B_{2}\left(H_{1}, H_{2}\right)$ is a subspace of $B\left(H_{1}, H_{2}\right)$ and $\|\cdot\|_{2}$ is a norm on $B_{2}\left(H_{1}, H_{2}\right)$ called the Hilbert-Schmidt norm. Moreover, if $A, B \in B_{2}\left(H_{1}, H_{2}\right)$, then the inner product

$$
\begin{equation*}
\langle A, B\rangle=\sum_{n \in \mathbb{N}}\left\langle A \phi_{n}, B \phi_{n}\right\rangle \tag{84}
\end{equation*}
$$

is well defined and $B_{2}\left(H_{1}, H_{2}\right)$ becomes a Hilbert space. From the above definition it is easy to see that $B^{*} A$ is a trace class operator on $H_{1}$ with $\operatorname{Tr} B^{*} A=\langle A, B\rangle$. As a consequence we have the following.

Proposition 17. $A \in B\left(H_{1}, H_{2}\right)$ is a Hilbert-Schmidt operator if and only if $A^{*} A$ is a trace class operator on $H_{1}$.

We can now prove Parseval's equality for Fourier transforms.
Theorem 9 (Parseval's equality). If belongs to $\mathscr{S}(M(2))$, then $\widehat{f}(a)$ is a HilbertSchmidt operator on $L^{2}(\mathbb{T})$ and it satisfies

$$
\begin{equation*}
\int_{M(2)}|f(g)|^{2} d g=\int_{0}^{\infty}\|\widehat{f}(a)\|_{2}^{2} a d a \tag{85}
\end{equation*}
$$

Proof. Define $b:=f * f^{*}$. By Proposition $16 h \in \mathscr{S}(M(2))$ is also a rapidly decreasing function. By Proposition is $\widehat{b}(a)$ is of trace class and $\operatorname{Tr} \widehat{b}(a)=\operatorname{Tr}\left(\widehat{f^{*}}(a) \widehat{f}(a)\right)=$ $\operatorname{Tr}\left(\widehat{f}(a)^{*} \widehat{f}(a)\right)$ (by Proposition II). Hence, we have $\widehat{b}(a)=\|\widehat{f}(a)\|_{2}^{2}$ and by Proposition I7, $\widehat{f}(a)$ is a Hilbert-Schmidt operator. By Theorem 8 we have

$$
\begin{equation*}
h(e)=\int_{0}^{\infty} \operatorname{Tr}(\widehat{h}(a)) a d a=\int_{0}^{\infty}\|\widehat{f}(a)\|_{2}^{2} a d a \tag{86}
\end{equation*}
$$

and by definition of the convolution product, we have

$$
\begin{equation*}
h(e)=f * f^{*}(e)=\int_{M(2)} f(g) \overline{f(g)} d g=\int_{M(2)}|f(g)|^{2} d g . \tag{87}
\end{equation*}
$$

In general, we cannot define the character of the representation $\pi_{a}$ as the unitary operator $\pi_{a}(g)$ need not be of trace class and the series

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}}\left\langle\pi_{a}(g) \chi_{n}, \chi_{n}\right\rangle \tag{88}
\end{equation*}
$$

may not converge. One way out is to look at the above series as a distribution on $G=M(2)$.

Definition 8 (distribution). Let $C_{c}(G)$ be the space of all complex valued $C^{\infty}$-functions on $G$ with compact support. A continuous linear form on $C_{c}(G)$ is called a distribution on $G$.

We define the character $\chi_{a}$ as the linear form

$$
\begin{equation*}
\chi_{a}: f \mapsto \sum_{n \in \mathbb{Z}} \int_{G} f(g)\left\langle\pi_{a}(g) \chi_{n}, \chi_{n}\right\rangle d g=\sum_{n \in \mathbb{Z}}\left\langle\pi_{a}^{f} \chi_{n}, \chi_{n}\right\rangle=\operatorname{Tr} \pi_{a}^{f} \tag{89}
\end{equation*}
$$

for $f \in C_{c}(G)$, where

$$
\begin{equation*}
\pi_{a}^{f}=\int_{G} f(g) \pi_{a}(g) d g \tag{90}
\end{equation*}
$$

If we let $h(g)=f\left(g^{-1}\right)$, then $\pi_{a}^{f}=\widehat{b}(a)$ and we write $h\left(r e^{i \phi}, \alpha\right)=b[r, \phi, \alpha]$.
We have the following characterization of distributions.
Theorem ı. For any fixed $a>0$, the linear form $\chi_{a}: f \mapsto \pi_{a}^{f}$ is a distribution on $M(2)$. Moreover, $\chi_{a}$ is equal to $J_{0}(a|z|) \otimes \delta(\alpha)$, where $J_{0}$ is the Bessel function of order o and $\delta$ is the Dirac measure at o on $\mathbb{T}$.

Proof. By Propositions i2 and is $\pi_{a}^{f}$ is of trace class and

$$
\begin{align*}
\operatorname{Tr} \pi_{a}^{f} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} k_{b}^{a}(\theta, \theta) d \theta \\
& =\frac{1}{(2 \pi)^{2}} \int_{0}^{\infty} \int_{0}^{2 \pi} \int_{0}^{2 \pi} b[r, \phi, 0] e^{i a r \cos (\phi-\theta)} r d r d \phi d \theta \\
& =\int_{\mathbb{R}^{2}} f(-z, 0) J_{0}(a|z|) d m(z) \\
& =\int_{\mathbb{T}} \int_{\mathbb{R}^{2}} f(z, \alpha) J_{0}(a|z|) d m(z) d \delta(\alpha) . \tag{91}
\end{align*}
$$

We now want to extend the Fourier transform uniquely from $\mathscr{S}(M(2))$ to an isometry of $L^{2}(M(2))$.

### 3.3 Plancherel theorem

Lemma 3. Let $H_{1}=L^{2}(X, \mu), H_{2}=L^{2}(Y, \nu)$, and let $\Phi$ be the mapping of $H=$ $L^{2}(X \times Y, \mu \times \nu)$ into the space $B_{2}\left(H_{2}, H_{1}\right)$ of Hilbert-Schmidt operators which maps $k \in H$ into the integral operator $K$ with the kernel $k$. Then $\Phi$ is an isometry of $H$ onto $B_{2}\left(H_{2}, H_{1}\right)$.

Definition 9. Let $X, Y$ be two sets and $C(X), C(Y)$ and $C(X \times Y)$ be the vector spaces of all complex valued functions on $X, Y$ and $X \times Y$ respectively. For any two functions $f \in C(X)$ and $g \in C(Y)$, define

$$
\begin{equation*}
(f \circledast g)(x, y)=f(x) g(y) \tag{92}
\end{equation*}
$$

such that $f \circledast g \in C(X \times Y)$.
Since the mapping $(f, g) \mapsto f \circledast g$ is bilinear from $C(X) \times C(Y)$ into $C(X \times Y)$, there exists a linear map $\phi: C(X) \otimes C(Y) \rightarrow C(X \times Y)$ such that

$$
\begin{equation*}
\phi(f \otimes g)=f \circledast g \tag{93}
\end{equation*}
$$

$\phi$ is injective. If we let $\phi(h)=0$, then we have

$$
\begin{equation*}
h=\sum_{m, n} a_{m, n} f_{m} \otimes g_{n} \tag{94}
\end{equation*}
$$

where $\left(f_{m}\right)$ and $\left(g_{n}\right)$ are linearly independent families in $C(X)$ and $C(Y)$ respectively. Since

$$
\begin{equation*}
\sum_{m, n} a_{m, n} f_{m}(x) g_{n}(x)=0 \quad \text { for all } x \in X, y \in Y \tag{95}
\end{equation*}
$$

we have $\sum_{m} a_{m, n} f_{m}=0$ for all $n$ by linearly independence of $\left(g_{n}\right)$. And by linear independence of $\left(f_{m}\right), a_{n, m}=0$ for all $n, m$ and $b=0$.
Lemma 4. Let $H_{1}=L^{2}(X, \mu), H_{2}=L^{2}(Y, \nu)$ and $H=L^{2}(X \times Y, \mu \times \nu)$. Then the mapping $\phi$ defined above can be extended uniquely to an isometry $\Phi$ of the Hilbert space tensor product $H_{1} \otimes H_{2}$ onto $H$.

Due to the isometry $\Phi$, we can identify $f \otimes g$ with $f \circledast g$ and we write $(f \otimes g)(x, y)=$ $f(x) f(y)$.
Theorem in. Let $G=M(2)$. Then $\mathscr{S}(G)$ is dense in $L^{2}(G)$.
Let $\mathbf{B}_{2}=B_{2}\left(L^{2}(\mathbb{T})\right)$ be the Hilbert space of all Hilbert-Schmidt operators on $L^{2}(\mathbb{T})$, and put $H_{a}=\mathbf{B}_{2}$. Define $H=\int_{0}^{\infty} \oplus H_{a} a d a$ and let $L$ be an element in $H$. Then $L$ is a function on $\mathbb{R}_{+}=(0, \infty)$ with values in $\mathbf{B}_{2}$. Since $L(a)$ (value of $L$ at $\left.a\right)$ is a Hilbert-Schmidt operator on $L^{2}(\mathbb{T})$, by Lemma 3 it is an integral operator with kernel
$k_{a} \in L^{2}(\mathbb{T} \times \mathbb{T})$. We have

$$
\begin{align*}
\|L\|^{2} & =\int_{0}^{\infty}\|L(a)\|_{2}^{2} a d a \\
& =\int_{0}^{\infty}\left\|k_{a}\right\|_{2}^{2} a d a \\
& =\int_{0}^{\infty} \int_{\mathbb{T}} \int_{\mathbb{T}}\left|k_{a}(s, r)\right|^{2} d s d r a d a, \tag{96}
\end{align*}
$$

and $\Phi: L \mapsto k_{a}(s, r)$ is an isometry of $H$ onto $L^{2}\left(\mathbb{R}_{+} \times \mathbb{T} \times \mathbb{T}\right)$ (again, by Lemma 3). We identify $H$ with $L\left(\mathbb{R}_{+} \times \mathbb{T} \times \mathbb{T}\right)$ by the map $\Phi$.

Let $\phi: \mathbb{R}_{+} \times \mathbb{T} \rightarrow \mathbb{R}^{2}$ be defined by

$$
\begin{equation*}
(a, r) \mapsto r a, \tag{97}
\end{equation*}
$$

for $a \in \mathbb{R}_{+}$and $r \in \mathbb{T}$. Then the transformation to polar coordinates, $g \mapsto g \circ \phi$, is an isometry of $L^{2}\left(\mathbb{R}^{2}\right)$ onto $L^{2}\left(\mathbb{R}_{+}, \mathbb{T}\right)$. We identify $L^{2}\left(\mathbb{R}^{2}\right)$ with $L^{2}\left(\mathbb{R}_{+} \times \mathbb{T}\right)$.
Theorem $\mathbf{1 2}$ (Plancherel theorem). Let $\mathbf{B}_{2}=B_{2}\left(L^{2}(\mathbb{T})\right)$ be the Hilbert space of all Hilbert-Schmidt operators on $L^{2}(\mathbb{T})$. Put $H_{a}=\mathbf{B}_{2}$ for all $a>0$ and $H=\int_{0}^{\infty} \oplus H_{a}$ ada. Then the Fourier transform $\mathscr{F}: f \mapsto \widehat{f}$ can be extended uniquely to an isometry $F$ of $L^{2}(M(2))$ onto $H$.

Proof. Parseval's identity (Theorem 9) shows that $\mathscr{F}$ is an isometry of $\mathscr{S}(M(2))$ into $H$. Since $\mathscr{S}(M(2))$ is dense in $L^{2}(M(2))$ (Theorem пI), $\mathscr{F}$ can be extended uniquely to an isometry $F$ of $L^{2}(M(2))$ into $H$. Now we need to show that $F$ is surjective.
Since $F$ is an isometry, the image $\operatorname{Im} F$ is closed in $H$. To prove the surjectivity of $F$, it is suffices to show that $\operatorname{Im} \mathscr{F}$ is dense in $H$. Moreover, since $\operatorname{Im} \mathscr{F} \subset \operatorname{Im} F$, it is sufficient to show that for any $k \in H=L^{2}\left(\mathbb{R}^{2} \times \mathbb{T}\right)$ and $\epsilon>0$, there exists an element $f$ in $\mathscr{S}(M(2))$ such that

$$
\begin{equation*}
\left\|k-k_{f}\right\|_{2}<\epsilon \tag{98}
\end{equation*}
$$

By Lemma 4, we can identify $L^{2}\left(\mathbb{R}^{2} \times \mathbb{T}\right)=L^{2}\left(\mathbb{R}^{2}\right) \otimes L^{2}(\mathbb{T})$ and we can assume that the element $k$ in (98) is of the form $k=g \otimes h$ for $g \in L^{2}\left(\mathbb{R}^{2}\right)$ and $b \in L^{2}(\mathbb{T})$. Moreover since the space of trigonometric polynomials is dense $L^{2}(\mathbb{T})$, we cal assume without loss of generality that $b=\chi_{n}$ for some $n \in \mathbb{Z}$. Let $u(r a)=\chi_{n}(r) g(r a)$ for $r \in \mathbb{T}$ and $a>0$, where $\chi_{n}(r(\alpha))=e^{i n \alpha}$. Then $u \in L^{2}\left(\mathbb{R}^{2}\right)$. We shall use the fact that $\mathscr{S}\left(\mathbb{R}^{2}\right)$ is dense in $L^{2}\left(\mathbb{R}^{2}\right)$ to get an element $v \in \mathscr{S}\left(\mathbb{R}^{2}\right)$ such tha $t$

$$
\begin{equation*}
\|u-v\|_{2}<\epsilon . \tag{99}
\end{equation*}
$$

Let $\mathscr{F}^{*} v=w$ be the inverse Fourier transform of $v$ on $\mathbb{R}^{2}$. Then $w \in \mathscr{S}\left(\mathbb{R}^{2}\right)$ is a rapidly decreasing function. Hence $f=w \otimes \chi_{-n}$ is a rapidly decreasing function on $M(2)$, i.e. $f \in \mathscr{S}(M(2))$. This $f$ satisfies (98). Since

$$
\begin{equation*}
k_{a}^{f}(s, r)=(\mathscr{F} w)(r a) \chi_{-n}\left(r s^{-1}\right)=v(r a) \chi_{-n}(r) \chi_{n}(s) \tag{Ioo}
\end{equation*}
$$

we have

$$
\begin{align*}
\left\|k-k_{f}\right\|_{2} & =\left\|g \otimes \chi_{n}-k_{f}\right\|_{2} \\
& =\left\|\left(\chi_{-n} u\right) \otimes \chi_{n}-\left(\chi_{-n} v\right) \otimes \chi_{n}\right\|_{2} \\
& =\left\|\chi_{-n}(u-v)\right\|_{2}\left\|\chi_{n}\right\|_{2} \\
& =\|u-v\|<\epsilon . \tag{ior}
\end{align*}
$$

We can use the Plancherel theorem to decompose the regular representation into irreducible representations and prove an analogue of the Peter-Weyl theorem for $M(2)$.
Proposition 18. Let $\pi$ be a unitary representation of a topological group $G$ on a separable Hilbert space H. Let $\mathbf{B}_{2}=B_{2}(H)$ be the Hilbert space of all Hilbert-Schmidt operators on $H$ and define a unitary representation of $\tau$ of $G$ on $\mathbf{B}_{2}$ by setting

$$
\begin{equation*}
\tau(g)(A)=\pi(g) A \quad \text { for } A \in \mathbf{B}_{2} \text { and } g \in G . \tag{io2}
\end{equation*}
$$

Then $\tau$ can be decomposed as the direct sum of countable copies of $\pi$. More precisely, let $\left(\phi_{n}\right)$ be an orthonormal basis of $H, P_{n}$ be the projection on $\mathbb{C} \phi_{n}$ and

$$
\begin{equation*}
\mathbf{B}_{2}^{n}=\left\{A \in \mathbf{B}_{2} \mid A P_{n}=A\right\} . \tag{ㅇo3}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\mathbf{B}_{2}=\bigoplus_{n=0}^{\infty} \mathbf{B}_{2}^{n} \quad \text { and }\left.\quad \tau\right|_{\mathbf{B}_{2}^{n}} \cong \pi \tag{으}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
Finally, we have:
Theorem 13. Let L be the left regular representation of $G=M(2)$. Then Lis decomposed as follows

$$
\begin{equation*}
L \cong \int_{0}^{\infty} \bigoplus \tau_{a} a d a \tag{ios}
\end{equation*}
$$

where $\tau_{a}$ is the direct sum of countable copies of $\pi_{a}$ :

$$
\begin{equation*}
\tau_{a} \cong \bigoplus_{n \in \mathbb{Z}} \tau_{a} \quad \text { for all } a>0 \tag{io6}
\end{equation*}
$$

## 4 Application to the quantum free particle

We end with a short and relatively informal discussion on the application of the representation theory of $M(2)$ to the problem of a free particle in quantum mechanics.

At the beginning we saw a matrix representation of $M(2)$

$$
M(2)=\left\{\left.\left[\begin{array}{cc}
e^{i \alpha} & z  \tag{107}\\
0 & 1
\end{array}\right] \right\rvert\, \text { for any } \alpha \in \mathbb{R} \text { and } z \in \mathbb{C}\right\}
$$

From here, we can see that the Lie algebra of $M(2)$ is the real vector space spanned by

$$
L=\left[\begin{array}{ll}
i & 0  \tag{ıo8}\\
0 & 0
\end{array}\right], \quad P_{1}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad P_{2}=\left[\begin{array}{ll}
0 & i \\
0 & 0
\end{array}\right]
$$

with Lie bracket relations

$$
\begin{equation*}
\left[L, P_{1}\right]=P_{2}, \quad\left[L, P_{2}\right]=-P_{1}, \quad\left[P_{1}, P_{2}\right]=0 \tag{ı09}
\end{equation*}
$$

The so called Schrödinger representation $\pi_{S}$ provides a unitary Lie algebra representation on the space $L^{2}\left(\mathbb{R}^{2}\right)$. This is given by the operators

$$
\begin{equation*}
\pi_{S}\left(P_{1}\right)=-\frac{\partial}{\partial x_{1}}, \quad \pi_{S}\left(P_{2}\right)=-\frac{\partial}{\partial x_{2}} \tag{іІо}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi_{S}(L)=-\left(x_{1} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{1}}\right) \tag{III}
\end{equation*}
$$

Hamiltonian operator for a free particle in two dimensions is

$$
\begin{equation*}
\widehat{H}=-\frac{1}{2 m}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right) \tag{II2}
\end{equation*}
$$

and solutions to the Schrödinger equation can be found as solutions to the eigenvalue equation

$$
\begin{equation*}
\widehat{H} \psi\left(x_{1}, x_{2}\right)=-\frac{1}{2 m}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right) \psi\left(x_{1}, x_{2}\right)=E \psi\left(x_{1}, x_{2}\right) \tag{⿺辶}
\end{equation*}
$$

The operators $\pi_{S}(L), \pi_{S}\left(P_{1}\right)$ and $\pi_{S}\left(P_{2}\right)$ commute with $\widehat{H}$ and provide a representation of the Lie algebra of $M(2)$ on the eigenspace of $\widehat{H}$ with eigenvalue $E$. These eigenspaces are infinite dimensional and are characterized by the non-negative eigenvalue $E$ which has the physical interpretation of energy.

An element $g(r(\alpha), w)$ of $M(2)$ acts on the space of solutions $\psi(x)=\psi\left(x_{1}, x_{2}\right)$ by

$$
\begin{equation*}
g(r(\alpha), w) \cdot \psi(x)=\psi(r(-\alpha)(x-w)) \tag{II4}
\end{equation*}
$$

which is very similar to the left translation of the function $\psi$. In fact, this representation is the same as the exponentiated version of the Schrödinger representation $\pi_{S}$. For a translation $t(w) \in M(2)$,

$$
\begin{equation*}
t(w) \cdot \psi(x)=e^{w_{1} \pi_{S}\left(P_{1}\right)+w_{2} \pi_{S}\left(P_{2}\right)} \psi(x)=\psi(x-w) \tag{IIS}
\end{equation*}
$$

and for a rotation $r(\alpha) \in M(2)$,

$$
\begin{equation*}
r(\alpha) \cdot \psi(x)=e^{\pi_{S}(L) \alpha} \psi(x)=\psi(r(-\alpha) x) \tag{ı6}
\end{equation*}
$$

By passing over to the "momentum space", these representations can be shown to be equivalent to the principal series of representations described in Section 2.

## References

1. Mitsuo Sugiura. Unitary Representations and Harmonic Analysis: An Introduction (1990). Second Edition. Kodansha Ltd Tokyo.
2. Peter Woit. Quantum Theory, Groups and Representations (2017). Springer.
