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1 Isometries of R”

Definition 1 (isometry). Az isometry of R” is a function A : R* — R” that pre-
serves distances between points, i.e., for x,y € R™ an isometry satisfies ||A(x) — A(y)|| =

[|x — y|| where
el = | >0 8
j=1

We denote the collection of isometries by
= {A :R” > R” | [|A(x) —A®)|| = ||x —y]| for every x,y € R”}.

An isometry is said to fix the origin if it satisfies A(0) = 0. It can be shown that
isometries that keep the origin fixed preserve the dot product on R”.

Proposition 1. 4 function A :R” — R” is an isometry satisfying A(0) = 0 if and only
if A preserves dot products: (A(x),A(y)) = (x,y) for all x,y € R”.

Proof. Let A(0) =0. Since A fixes the origin, we have ||x|| =||A(x) —A(0)|| = [|A(x)]|.
Since ||x||* = (x, x) we get

(A(x) = A), A(x) —A@)) = (x — y,x—y>
= (A(x),A(x)) = 2{A(x), A(y)) + {AD), AD)) = (x, ) = 2(x,7) + (,7)
= (A(x),A(y)) = (x,)

Conversely, assume that (A(x),A(y)) = (x,y). We then have
{A(x) —A(y), A(x) —A(y))

{A(x),A(x)) —2(A(x),A(y)) +(A(),AW))
{x,x) =2(x,7) + (3,7)
{

x—y,x—y) =[x =yl (2)

1A(x)—AW)II* =

Hence, A is an isometry. Finally, setting x = y = 0 yields ||A(0)|| = 0, and therefore
A(0)=0. O



Moreover, we can also show the following

Proposition 2. A function A : R" — R” is an isometry satisfying A(Q) = 0 if and only
if A is linear and orthogonal AAT = 1.

Proof. It suffices to show that the map A is linear as orthogonality follows because A
preserves inner products:

(x,7) = (A(x),A(y)) = (AT A(x), ) = (x,AAT (7)) (3)

for all x,y € R”, and therefore ATA = AAT =1. Let {e;};=1,.,» be the standard or-
thonormal basis for R” such that (e;, ¢ ) = 8. Then {A(e;)} is also an orthonormal
basis for R” with (A(e; ), A(e;)) = ;5. We shall first show that A(cx) = cA(x). Let
x €R” and ¢ €RR, then A(cx) can be expanded in the orthogonal basis {A(e; )}

A(cx) = i(A(cx),A(ej )A(e;) = Zn:(cx, e;)A(e;)
=1 =1
= ¢Sy = ¢ S THAG),Ale DAGe,)
7j=1 j=1
= cA(x). (4)

Similarly, for x,y € R” we have

n

At y) = S A+ 3) Al Ale) = S (e )Ale) + S e JAle,)

j=1 j=1 j=1
=D {A(x), Ale))Ale;) + D L{AD), Ale))Ale;)
=1 j=1
=A(x) +A(y). (s)

For the converse, we only note that, by definition, an orthogonal linear map preserves
inner products and therefore by Proposition 1it is an isometry which fixes the origin.

]

The following result shows that any isometry of R” can be written as a composition
of a translation and an orthogonal map.

Theorem 1. Every isometry of R” can be written as T o R, where T is a translation
and R is an orthogonal map.

Proof. Let A : R” — R” be an isometry. For x € R” define a translation 7'(x) :=
x + A(0) and an orthogonal map R(x) := A(x) — A(0) so that we get T o R(x) =
T(A(x)—A(0)) = A(x). It follows that R as defined above is orthogonal because it is
an isometry which fixes the origin, A(0) =0.

Conversely, if T, is a translation by a vector @ and R is an orthogonal map so that



A=T, oR,then for every x,y € R we have
A(x)—A(y) = (R(x)+w)—(R(y) + @) = R(x) —R(y) (6)

and therefore
lAGx) = Al = [[R(x) = R(»)I| = [|x —»]|- (7)

Hence, T, o R is an isometry. O]

With these results, we can show that isometries of R” are invertible and that the inverse
of an isometry is also an isometry.

Proposition 3. Lsometries of R” are invertible and the inverse of an isometry is also an
sometry.

Proof. Let A € I(n)be an isometry. By Theorem 1, A= T o R where T'(x) = x +A(0)
and R is an orthogonal map. As R is orthogonal, it is invertible with R'=RT and
we define the inverse of A as

A7 (x) = R (x — A(0)). (8)

To show that A1 is an isometry, we note that

40470 = | R e —A0)— R —40), (9)
forall x,y € R%, and since R~! = R7 is an orthogonal map and therefore an isometry,
we have

IR (x—A©) =R (y = A©))| = I(x —A©@) — (y —AO)I| =[x =1
Hence, if A=T, oRthen A™'=T 5, oR7. O

Hence, with the operation of function composition, the collection /(7) becomes a

group. For any two isometries A, B € I(n) we can writt A=T,, oR;and B=T,, oR,

where R; € O(n) and T, are translations. We have the group composition for
7

any x € R?
AoB(x) =R Ry(x)+w; + Ry(w) =Ty 4R w, ©R1 Ry (10)
And theinverse A= = (T, o Ry ' =R"'oT =T p., 0oR"!, by Proposition 3.

Before moving ahead, we quickly note the following result.

Proposition 4. The groups R” and O(n) are subgroups of I1(n).



1.1 Semidirect products

Definition 2 (semidirect product of groups). Given a group K, a group N and an
action ® of K on N by automorphisms

¢, :N—>N n—d(n), (1)

the semidirect product N x K is the set of pairs (n,k) € N x K with group composition
law

(ny, k1 )(15, Rp) = (”1%1(”2), kiky). (12)
Proposition s. Semidirect product of groups as defined above is indeed a group.

Proof. Letey € N and ex € K be the identities in N and K respectively. Then (ey;, ex)
is the identity for N x K

(en»ex)(n, k) = (en®,, (), exk) = (n, k) (13)
and
(n,k)(en,ex) = (n®p(en), keg) = (n, k). (14)

Given the identity, we can compute the inverse with respect to the group composition
law by requiring (1, %)(,k) ™! = (e, ex). We can verify that the inverse is given by
(72, k)_l = (‘I’/rl("_l), k_l):

(n,k) " (k)

(@i (n 1), &™), k)
(@i ()4 (n), k" 'k)

= (en» ek)- (15)

Finally, we verify that the group multiplication is associative. For 7,,7,,7; € N and
ki ky ks €K

[(r1, k1 )(125,k2) (725, k5) = (”1‘I>/e (15), kil )(n3, R3)
:(”1‘1)/e1(” )%y, kz(na) kikyks)
= (1, %y, (2%, (73)), k1 eykes)

=(n;,k )(”2‘1)k (n3), kyes)

= (n1,k)[(n,ky)(723, k3)]- (16)

Hence, N x K is indeed a group. O

Elements of N x K of the kind (7, ex) form a subgroup of N x K isomorphic to N.
Similarly, elements of the kind (ey;, &) form a subgroup isomorphic to K. In slight
abuse of notation, when we shall say that N and K are subgroups of N x K when we
are actually referring to isomorphic copies of N and K inside N x K.

Proposition 6. Let N x K be a semidirect product of groups. Then N is a normal
subgroup of N x K.



Proof. We want to show that gNg=! =N forall g =(n,k) € N x K. Let (m, ex) €
N x K for m € N. We have

(,k)(m, e )(m, k)™ = (n®y(m), k) (@pa(n ), k)
(1 (11)Dp(Bpa(n ")), k™)

(n®@(m)n~" ex) EN. (17)

Thus, givenany m € N, we have forany (n,k) € NxK,n'mn € Nand®, i(n"'mn) €
N sothat (n,k)(@,—1(n " mn),ex)(n, k)~ = (m,ex)and therefore (m,ex ) € gNg™!
where g = (n,k) and therefore N C gNg~'. Conversely, any element of gNg ™! is
of the form in (17) and hence N = gNg~! forall g e N x K. ]

The factor K in N x K need not be normal. We also note that the direct product is a
special case of semidirect product when @, is the trivial automorphism for all £ € K.

We have an action ® of O(7) on R” by automorphisms: ®5 : R” — R” given naturally
by x — Rx. We notice that the group composition law for a semidirect product
R” » O(n) is identical to the group composition law (10) for /(). Explicitly, for
(w1, Ry), (@, Ry) €R” % O(n)

(w0, Ry )(wy, Ry) = (wy + Pp (w3), Ry Ry) = (w; + Rywy, Ry R;). (18)

Moreover, since Theorem 1implies that every isometry can be written as a composition
of a translation and an orthogonal transformation, we have the following characteri-
zation of the isometry group.

Theorem 2. Theisometry group I(n)is the semidirect product of R” and O(n), i.e., 1(n) =
R” x O(n).
Corollary 1. R” 75 a normal subgroup of of the isometriy group 1(n).

Let p : N x K — K be the canonical surjection map, i.e., (7,k) — k. Then pisa
group homomorphism. We verify this by taking any (7,,%,),(7,,k,) € N x K and
noting that

p((n1, k1) (n3,k2)) = p(n,Dy (1), k1 Ry) = Ry
= p((n1,k1))p((m2,2))- (19)
Moreover, the kernel of p is N. This can be verified by noting that any (7, e) is
mapped to eg under p, therefore N C ker p. Conversely, (n,k) € ker p implies

k = ex and (n,k) = (n,ex) € N. Now, the first isomorphism theorem gives us
K= (N xK)/N.

Proposition 7. Let G = N % K be a semidirect product of groups N and G. Then
G/N =K.

Applying the above result to the isometry group gives

Corollary 2. I(n)/R" = O(n).



1.2 Euclidean motion group

Elements of () of the form 77, o R where R € SO(#) are called orientation preserving
isometries of R”. Orientation preserving isometries form a subgroup of /(7).

Definition 3 (Euclidean motion group). The Euclidean motion group in n-dimensions,
denoted M(n), is the collection of all orientation preserving isometries of R”.

Just like in case of I(n), we have: M(n) = R” x SO(n). Moreover, R” is a normal
subgroup of M(n) and if p : M(n) — SO(n) is the canonical surjection map, then p
is a homomorphism with ker(p) =R” and SO(n) = M(n)/R".

In the rest of this report we shall focus on the Euclidean motion group in two dimen-
sions, i.e., 7 = 2.

In particular, as R? = C and SO(2) = U(1) = T, where T is the 1-dimensional torus,
we can make the identification M(2) = C x T. With this identification M(2) is the
group of orientation preserving isometries of C. We shall denote elements of M(2)
by g(z,a) = t(z) o r(a), where, for w € C, t(z)(w) = w + z is a translation and
r(a)(w) = we'? is the action of U(1) on C.

The Euclidean inner product on C is given by (z, w) = Re(zw).

M(2) can be embedded in GL(2, C) as the subgroup with matrices of the form

we={[5 7]

Hence, M(2) is a linear Lie group. In fact, /(2) is a 3-dimensional Lie group with two
connected components. M(2) is the connected component of /(2) containing the
identity.

foranyaERandzE(C}. (20)

For future reference, we note the following relations.

L r()r(B)=r(a+ ) r(a) =r(—a)

2 t(2)t(w)=t(z+w); t(z) ' =t(—2)

3. g(z,a)=1t(2)r(a)

4. g(z,0) ' = g(=r(=a)z,—a)

5. g(z,a)g(w, B) = g(z+ r(a)w, r(a+f3))

2 Irreducible representations of M(2)
The compact group T = R/27Z has the normalized Haar measure dr =da /2. We
start by looking at a family of unitary representations of M(2).

Theorem 3. Let a € R2. There exists a unitary representation 7, of M(2) on L*(T)
defined by

(m(@)F)(x) =" I F(r(a)'x), (21)
where g = t(z)r(a) and F € L*(T).



Proof. We verify that 7, is unitary. For g = t(z)r(a) € M(2) and F,F’' € L*(T)

(mFm(OF ) = | FO P, (22)

T

and since the measure on T is left invariant
(rF 7 (F ) = | FOFTIdx = (£, (23)

T

We also verify that 7r, as defined above is a group homomorphism of #(2) into
GL(LX(T). Let g, = t(z,)r(a,) and g, = t(z,)7(a,), then for F € L*(T)

(m,(81)m,()F)(x) = 7, (g )e " @) “ F(r ()7 x)
ei(z]-i-r(az)zz,xa)F(r(al + az)—lx)

= (7,(818)F )(x)-

Finally, we need to show that the mapping g — 7,(g) from M(2) to GL(L*(T)), with
strong operator topology on GL(L?*(T)), is continuous. It is sufficient to prove that
the map is continuous at identity, i.e., given € > O there exists a neighbourhood U of
e in M(2) such that

||, (g)F —F||<e foranygeU. (24)

Since the case of F = 0 is trivial, assume F # 0. We can assume ¢ /3 < ||F||, and since
C(T) is dense in L*(T), there exists ¢ € C(T) satisfying

IF =gl <e/3. (25)

As||F||> €/3, ¢ #0. Since ¢ is a continuous function on the compact group T, it
is bounded and uniformly continuous and therefore translations of ¢ are continu-
ous, i.e., there exists a neighbourhood V' of identity in T such that the left regular
representation satisfies

L, — ||, <e€/6 foranyreV. (26)

Moreover, since |{(w, ta)| < |w||a| for an ¢ € T, there exists a neighbourhood W of o

in R2 such that .

(27)
6l Al oo
forevery w e Wand t € T. Let U = t(W) x V. Then U is a neighbourhood of e in

|ei(w,ta) _ 1| <




M(2).1f g =t(z)r(a) € U, then we have

(&) —$ll=sup e “ S 0)— (o)
e/t Gr )= p(o)| + | = Dgo)]|

<N, G Bl + | =1 Il
<e/6+¢€/6=¢/3. (28)

<

Finally, using the above inequality, (25) and the relations ||z, (g)f|| = ||} [|#]] <
Il e have

17 (§)F — Fll < I, (8)F — 7, ()l + 117, (8)p — Pl + 16 — £l
<l (&) F =)l +€/3+¢/3
<€/3+¢€/3+¢/3<e. (29)

]

The next result shows that the right regular representation of T intertwines 7z, with

Ty

Theorem 4. Let R, (v € T) be the right regular representation of T. Then we have

R,om,(g)=m,,(g)°R, (30)

Proof. Letry €T, g = t(z)r € M(2)and F € L*(T), we have

(R, 7 (&)F)(1) = m,(8)F (£70) = e =t F(r e )
=7,(§)F(t70) = (1, ()R, )F(¢) (31)
O
Since R, is unitary and always non-trivial, the above result shows that if |a| = |5],

then 7, and 7, are unitarily equivalent, i.e., 7, = 7, and it is sufficient to study
representations 7t, for which 2 > 0.

An explicit computation of the representation in Theorem 3 gives

Proposition 8. For g = t(,oei¢)r(a) the unitary operator 1t ,(g) (a > 0) is represented
by

(7, ()F)(6) =" P = P=DF (6 —a). (32)
Proof: As (z,a) = Re za, we have (z, 7(6)a). With the given g, we have z = pe’’ and

(2,7(0)a) =Re(ape' Py = ap cos(d — 0). (33)



By Theorem 3 we get

(9)F)(0) = ' DIF(G— o)
— eiapcos(qS—@)F(@ _a)' (34)

(7,

]

Proposition 9. Let F € LX(T). Then rt,(r)F =F forevery r € T if and only if F isa
constant function.

Proof. We notice that 7t (r) = L,, the left regular representation of T for every r € T.
Write F(0)=>",c7 ¢, x,(0) and

%(r(a))<2 Cn)(n>(9) =2 e " xu(0). (35)

ne€’ ne€”

Hence, F € L*(T) satisfies 7z, (g)F = F for every § € T ifand only if ¢, = e=*"%c,, for
every n € Z. This means ¢, = 0 for n # 0 and F = ¢y = ¢;, a constant. ]

We now give a converse to Theorem 4.

Lemma 1. Ler ¢,(g) = (m,(g)1,1), where 1 denotes the constant function that is 1
everywhere on T. Then we bave ¢ ,(g) = Jy(ap) for g = t(pei¢)r(a), where ] is the
Bessel function of order o.

Proof. By Proposition 8 we have

b (t(pe'?)r(a) = (m,(t(pe'?)r()1,1)
i o elap cos(qﬁ—@)de

- 277.' 0
1 2 ) 9
- etapcost g o
277.' 0
=Jolap), (36)
where the last equality follows from the definition of the Bessel function. O

Theorem s. Leta,b € R%. Then rt, is equivalent to 1), if and only if |a| = |b|.

Proof. Ttis sufficient to prove that if 7, = 7, fora, b >0, thena = b.

If 7, = 7, then there exists a unitary operator 7 on L*(T) such that T, (g) =
7,(g)T forall g € M(2). It we denote by 1 the constant function with value 1 on
T, then (7, (r)T)(1) = (T7,(r))(1) = T(1) for every r € T. Hence, T(1) = ¢, a



constant, by Proposition 9. Since T is unitary, |c| = 1. We have

P.(8)=(m (&), 1) = (Tmg)1, T1,)
= (7, T1 T1) = ey ()1,1)
=, g) forany g € M(2). (37)
By Lemma 1, we get
Jolap)=Jy(bp) foreverypeR. (38)
We know that ,
1 T
e ) (39)
TJo
differentiating twice gives
_1 27
JJ0)=— J cos?0d 6 < 0. (40)
21 0
If we put f,(x) = Jo(ax), then £,"(0) = a?J;'(0). As Jo(ap) = Jo(bp) we have a*](0) =
b*J}(0 )andhencea = b2
We have shown that if 7, = 7, then || =15]. ]

This next result shows that the representations 7, are irreducible for || > 0.

Lemma 2. The limit

) eiaxf(@) -1
lim [|[——————1af(0)||=0 (41)
x—0 X
bolds.
Proof.
iaxf(0) __ )
ex—l—mf(e)H = ﬁ' SO (1iaxf@)|_ (42)
By Taylor expansion of e*
/0 =1 4 jaxf(0)+ zaxf +0(x3) (43)
we get
iﬂxf(ﬁ)_l . tax (B 2 2
e——mf(@)H < LGSO o e (4a)
x - || 2 2
Hence, the limit holds. O

Theorem 6. If |a| > O, the unitary representation (1, L*(T)) is irreducible.

I0



Proof. By Theorem 4, we can assume @ > 0 without loss of generality. To show
irreducibility, it is sufficient to prove that if a projection operator P on L*(T) satisfies

Pr,(g)=m,(g)P forevery g e M(2), (45)

then P =0or P =1, i.e., L*(T) has no non-trivial invariant subspaces.

For n € Z, put y, () = ¢/"? and define f, := P, For g = t(0)7(a) € M(2) we have
(m,(r(a))f,)(0) = f,(0 —a) and therefore

f6—a)=(m,(r(2)Py,)(0) = (P, (r(2))(6)
=Py, (6 —a)=P" ") =" £ (6). (46)

With 6 = @, we concludef, (@) = c,e'"%, where ¢, = £,(0) is a constant, for every
n € Z. For x € R we have (by Proposition 8)

P(eiaxcosﬁeinﬁ) — (Pﬂa(t(x)))(ein6> — (ﬂd([(x))P)(n)(e)

= ¢, (7, (£(x),)(6) =, e’* <00 (47)
and therefore _ ; _ ;
iaxcost _{ iaxcost) __{
P<—e e”’e> :cn—e e (48)
x x
By Lemma 2 we get P(e*"? cos ) = ¢, e/ cos 6. Similarly, we have P(e?*sin0¢in0) =

¢, ' c0ein% and by Lemma 2 we get P(e'"?sin0) = ¢, e"? sin §. Together these
prove

Py,ii= P(e’%e%) = P(e'% cos 6 + ie'"? sin 6)

—c ¢ cosf + icneme sinf=c,y,,,; foreveryneZ. (49)

n

Hence, ¢,y =, and ¢, = ¢, for every n € ZZ. Since y,, is an orthonormal basis for
T, we get P = ¢y1, and as P is a projection operator Pl=pP — cg = ¢y, therefore
¢o =0o0r ¢y = 1. We have proved that P =0or P = 1. ]

The family of representations P = {7t |a > 0} is called the principal series of irreducible
representations of M(2).

All representations in the principal series are infinite dimensional. We will now look
at some one-dimensional representations of M(2). Let p : M(2) — T be the canonical
projection of M(2) = C x T onto T. Any irreducible representation y of T defines a
unitary representation y o p of M(2). The unitary dual of T is

rﬁ‘:{xn:r(a)»—»ei""‘|n€Z}. (50)

Allirreducible representations of T are one-dimensional, therefore the representations
X © P of M(2) are also irreducible.

Remarkably, these one-dimensional representations are the only irreducible unitary
representations of M (2) other than the principal series.

II



Theorem 7. Any irreducible unitary representation r of the Euclidean motion group
M(2) is equivalent to one of the elements in the set

M(2)={rJa>0}U{y,opln€Z). (51)

No two elements of M(2) are equivalent to each other.

3 Fourier transforms

Proposition 10. Let g = t(z)r(a)=t(x +iy)r(a). Thendg =dzdr =dxdydr
is a left invariant Haar measure on M(2). It is also right invariant and M(2) is a
unimodular group.

Proof. We have t(z,)r t(z,)r, = t(z, + r,2,)7, 7, and the Lebesgue measure dz on
C is invariant under rigid motion z; — z, + r,z,. We have already seen that d r is the
Haar measure on T, therefore we have d(g, g,) = d g,. Similarly, d(g,, g;) =d g, and
M(2) is a unimodular group. [l

The measure on M(2) given by d g =dzda/(27)* = dm(z)dr is called the normal-
ized Haar measure on G.

Definition 4 (Fourier transform). 7/e Fourier transform ]’F of a function f € L'(M(2))
is a function on R, = (0, 00) with values in B(L*(T)), the Banach space of bounded
linear operators on L*(T), defined by

f@=| fler(g)dg fora>0, (52)
M(2)

where 1t is a principal series unitary representation.

Proposition 11. If f and b are integrable function on M(2), then we have
& ||f@)|| <11l for any a >0
2. m = ]?, and
5 (F)@) =)y

Proof. 1. Letu € L*(T). We have

] =| [, reormte s w(e lde, (5

<, Vel

and since 7,(g ™) is unitary, and d g is the normalized Haar measure

£ @ || < W11l (54)

12



—

2. We use Fubini’s theorem and right invariance of d g to simplify f x h(a)

frha)y=| [fxh(g)m,(g7")dg

M2)

- fw) _ J f(gs*)h(s)ds]nﬂ(g—l)dg
= fm f flgs (e 1)dg}b<s>
- fM(z) f f<g>na<s—1g—l>dg}h<s>ds

:/l;(a)f(a):hf( (ss)

3. Let #,v € L?(H). We have

= (u, f(a)v) = ((f (@) »,v) (s6)

Hence 7\*(4) = f(ﬂ)*.
O

We define the notion of a rapidly decreasing function analogously to the case of R”.

Definition s. A complex valued C*°-function f on M(2) is called rapidly decreasing
if for any N € N and m € N* we have

punl)=_ sup [(A+]zFY D" )z )] < o0, (57)
where (L2 \" (13 \"(1 2\
(%) (65) &) %)

The vector space of all rapidly decreasing functions on a group G is denoted by . (G).

The following result shows that ]? (a) is an integral operator on L*(T) with its kernel
given by

/e“ (s,7) f(z rs— ‘(Z’m)dm(z). (59)

13



Proposition 12. If f is a rapidly decreasing function on M(2) and k; is as defined

above, then we have

:f /e}’(s,r)F(r)dr (60)
T
foranya>0and F € L*(T).

Proof. Let F,F' € L*(T)and g € M(2) with g = #(z)r and g~ ! = t(—r~'z)r—1. We
have

F@FF)y=|  f(e)m(g ). F)dg
M(2)
:fRZJ f(z,r)(ﬂﬂ(t(—r_lz)r_l)F,F/)dm(z)dr

N f”U ”1““>F(75)F’_(s)ds]dm(z)dr

JTJ[ flz,rs e B dim(z )] F(r)F/(s)dsdr
[

fT ka(s, 7)F )dr}F’( )ds.

If we denote the ordinary Fourier transform of z — f(z, r) by ]7 &,7):

fE,r)= e ) dmi(z), (61)

the kernel /e; is given by

k}(s,r):f(m,rs_l). (62)
3.1 Fourier inversion formula

Definition 6. A bounded linear operator A on a separable Hilbert space H is said to be
of trace class if for any orthonormal basis (¢ ,,),,en of H, the series

> (Ad,. ) (63)

neN
converges to a finite sum which is independent of the choice of ($,,).
The sum in (63) is called the z7ace of A and is denoted by TrA.

If A is of trace class then the series (63) converges absolutely, because the sum is
invariant under a change of ordering of ¢,,s.

The following result gives a sufficient condition for an operator to be of trace class.

Proposition 13. Let H be a separable Hilbert space. If a bounded linear operator A on

14



H satisfies
Z | A¢n’ | <o (64)

n,meN

for a fixed orthonormal basis (¢,,),en» then A is of trace class. Moreover, if U and V
are two bounded operators on H, then UAV, AV U, and V UA are of trace class and
bave the same trace.

PVOOf: Let am,n = <A¢m’¢n>’ %m,n = <U¢m’¢n>’ and vn,m - <V¢m’ ¢n> WC have

A¢m :Zﬂm,n(ﬁn’ qum :Z%m,n¢n and Vsbm :va,n¢n'
n=0 n=0 n=0

Hence

UAV¢m: Z %m,ndn,kvk,l¢l’ (65)
n,k,l=0

and with Schwarz inequality in /2 gives

) ) 1/2 / 1/2

2 2
Z |Mm,nan,kv/e,m| < |ﬂn,k|<z |Mm,n| > <Z |Mk,m| >
m=0

m=0 m=0

=12, UGV Bell7 <la, NUNMIVEL - (66)

and finally we have

D NUAVS,,¢,) 1< D lallUIIVE < o0, (67)
m=0 n,k=0

by hypothesis. Hence, the series 3, ., #,, ,a, v} ,, converges absolutely and we
can change the order of terms freely. We use Parseval’s equality to get

D (UAVS,,. )= Z(V%,A*U*%)
m =SV B U )
= Zk (V) (Ab, ) (Udr, )
=D (AVU, ) =D (VUAS,, ¢,). (68)

k n

Let (¢,,),en be another orthonormal basis of H, then the operator W, defined by
W, = ¢, is unitary and

= m=0

m O

Hence, UAV is of trace class, and in particular, putting U = V' = 1 shows that A is
of trace class. Similarly, AV U and V UA are also of trace class and (68) shows that
Tr(UAV)=Tr(AVU) = Tr(V UA). O

IS



Proposition 14. Ifk(0,¢) isa C*-function on T?, then the Fourier series

Z ﬂm’nei(m6’+n¢) (70)
m,n€’
of k, where
2w 2w
a, = ! 5 f (0, $)e 1m0+ 19)d0d p, (71)
T@2ry e Jo

converges absolutely and uniformly.

Proposition 1s. Ifk(8, ¢) isa C*-function on T2, then the operator L on L*(T) defined

by
2r
(LFYO) = | kO.HFH)s (72)

0
is of trace class with trace

1 27

TrL=— | k(60,6)d0. (73)

T Jo

Proof. Let y,(0) = 'Y, then (y,),c7 is an orthonormal basis of L(T). By the
previous proposition, the Fourier series of & converges and uniformly. We have

1 2w 27 b

and it follows that

> ULt 2a)| < 00 (75)

mneL

and by Proposition 13, L is of trace class. As the series (8, 6/) converges uniformly on
T, we can integrate it term by term and get

21 27
L k@,0d0= > a,, f T,
mnel 0

T Jo
= z am,n8m+n,0

mnel
=> 4= D (Lo ) = Tr L. (76)
meZL meZ
]

The above series of propositions culminates in the Fourier inversion formula for
rapidly decreasing functions.

Theorem 8 (inversion formula). Anry function f € (M (2)) may be recovered from
its Fourier transform f by the formula

flo)= | T le)f @)ada (7

16



In particular, 7, (g) ]/r\ (a) and ]? (a) are of trace class.

Proof. By Proposition 12 f(a) can be seen as an integral operator with a smooth kernel,
and therefore we can use Proposition 15 to say that f(a) is of trace class. Let g = £(z)u

for u € T; then 7 (g) f () is an integral operator

(7 (@) @F)(x) = ) (f(a)F)(u~'s)
= J ei<Z’x“)k;(u_1x, r)F(r)dr
T

:J ei<Z’x“)f(m rx u)F(r)dr, (78)
T

with kernel mf(g, x,7)=ellrxe ]7 (ra,rs™"u). By Proposition 1s,

T m (g;r,r)dr

Z?’d

m u)dr (79)

bb

For fixed 7, the function £, : z — f(z, r) is a rapidly decreasing on R?, and

2
:f f(z,7)e ">V dm(z) (80)
R

is the Fourier transform on R%; hence, we can use the inversion formula for £, € % (R?)
to get

f(8)=1(z f e!“ldm (&)

:f ff(m,u)e’ 274 adadr
o Jr

. fo T ()] @) Jada, (81

where in the second line we transformed to polar coordinates, and used Fubini’s
theorem to get to the last line by integrating over T. ]

Proposition 16. If f and h belong to # (M (2)), then f «h and f*(g)= f(g~") also
belong to S (M(2)).

Next, we want to prove the Parseval equality for Fourier transforms.

3.2 Parseval identity

Let H, and H, be two separable Hilbert spaces. The set of bounded linear operators
from H, into H, is denoted by B(H,, H,). Let (¢,,),,en be an orthonormal basis of

17



H,. For any element A of B(H|, H,) put

A1 = > llAg,II° (82)

neN

Let (¢,,),en be an orthonormal basis of H,. If (¢),),,cy is an orthonormal basis of
H,, by Parseval’s equality we have

D AP =20D [Ab, )l = D 1A I

neN neNmeN meN
=D I LA TRE XA (83)
meN neN neN

Hence, ||A]|, is independent of the choice of basis (¢,,). Moreover, the above calcula-
tion also shows that ||A||, =||A*]|,.

Definition 7. An operator A € B(H,, H,) is called a Hilbert-Schmidt operator 7f
[|A]l, < oo. The set of Hilbert-Schmidt operators is denoted by B,(H,, H,).

B,(H,,H,) is a subspace of B(H,,H,) and ||-||, is a norm on B,(H;, H,) called the
Hilbert-Schmidt norm. Moreover, if A, B € B,(H,, H,), then the inner product

(A.B)=> (A¢,.B4,) (84)

neN

is well defined and B,(H,, H,) becomes a Hilbert space. From the above definition
it is easy to see that B*A is a trace class operator on H; with TrB*A = (A,B). Asa
consequence we have the following.

Proposition 17. A € B(H,, H,) is a Hilbert-Schmidt operator if and only if A*A is a
trace class operator on H,.

We can now prove Parseval’s equality for Fourier transforms.

Theorem 9 (Parseval’s equality). If f belongs to S (M(2)), then ]? (a) is a Hilbert-
Schmidt operator on L*(T) and it satisfies

fm) f(g)Pdg = Jo | f(@”jﬂdﬂ. (85)

Proof. Define b := f « f*. By Proposition 16 h € #(M(2))is also a rapidly decreasing
function. By Proposition 15 /};(4) is of trace class and TrZ(a) = Tr<j/[:(a) f (a)) =
( f(a) f > (by Proposition 11). Hence, we have’I; (a)= H ]? a) H2 and by Proposi-

tion 17, ]? ) is a Hilbert-Schmidt operator. By Theorem 8 we have

h(e):Loo Tr(h( )ada—f Hf H ada, (86)

18



and by definition of the convolution product, we have

be)=f+f*(e)= f f(g)f()dg = j F(e)Pds. (7)
M) MQ2)

]

In general, we cannot define the character of the representation 7, as the unitary
operator 7,(g) need not be of trace class and the series

D (&) Xows Xn) (88)

ne’z
may not converge. One way out is to look at the above series as a distribution on
G=M(2).

Definition 8 (distribution). Let C,(G) be the space of all complex valued C *°-functions
on G with compact support. A continuous linear form on C,(G) is called a distribution
on G.

We define the character y, as the linear form

Xe :fHZJGf(g)(ﬂﬂ(g)xn,xn)dg =Sl ) =T, (89)

ne€Z nez
for f € C.(G), where
o= | fomeie. (50)
G

If welet h(g) = f(g™!), then nf: = Z(a) and we write h(re'?,a) = h[r, ¢, a].
We have the following characterization of distributions.

f

Theorem 10. For any fixed a > 0, the linear form y, : f — 1, is a distribution on
M(2). Moreover, y, is equal to Jo(a|z|) ® & (a), where ], is the Bessel function of order o
and & is the Dirac measure at o on .

f

Proof. By Propositions 12 and 15 7, is of trace class and

2
Trr! = 2i k4 (6,6)d0

T Jo

oo r2n 2w
(2711)2J0 fo i b7, ,0]e™" b= rdrdpdo

= | roualzhne)

. f f(z,a)olalz)dm(2)dd (@) (51)
T JR?
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We now want to extend the Fourier transform uniquely from .'(M(2)) to an isometry
of L2(M(2)).

3.3 Plancherel theorem

Lemma 3. Let H; = LX(X,u), Hy = L*(Y,v), and let ® be the mapping of H =
LA(X X Y, u X v) into the space By(H,, H,) of Hilbert-Schmidt operators which maps
k € H into the integral operator K with the kernel k. Then ® is an isometry of H onto
B,(H,, H,).

Definition 9. Let X, Y be two sets and C(X ), C(Y') and C(X x Y') be the vector spaces
of all complex valued functionson X, Y and X XY respectively. For any two functions
feC(X)and g e C(Y), define

(f ®g)x,y)=f(x)g(») (92)

suchthat f ) g€ C(X xY).

Since the mapping (f, g) — f & g is bilinear from C(X) x C(Y") into C(X x Y),
there exists a linear map ¢ : C(X)® C(Y) —» C(X x Y') such that

P(f@g)=/®g, (93)
¢ is injective. If we let ¢(h) = 0, then we have
h=2 0 nfn® &y (94)

where (f,,) and (g,,) are linearly independent families in C(X') and C(Y") respectively.
Since

Zam,nfm(x)gn(x)zo foralxeX,yeY (95)

we have >3 a,, . f,, = 0 forall n by linearly independence of (g,). And by linear
independence of (f,,), 4,, ,, =0 for all z,7m and h = 0.

Lemma 4. Let Hy = LX(X,u), H, = LXY,v)and H = L*(X X Y, u x v). Then the
mapping ¢ defined above can be extended uniquely to an isometry ® of the Hilbert space
tensor product H; @ H, onto H.

Due to the isometry ®, we can identify f ® g with f () g and we write (f ® g)(x,y) =
).

Theorem 11. Let G = M (2). Then & (G) is dense in L*(G).

Let B, = B,(L*(T)) be the Hilbert space of all Hilbert-Schmidt operators on L*(T),
and put H, = B,. Define H = fooo ®H ada and let L be an element in /. Then
L is a function on R = (0, c0) with values in B,. Since L(a) (value of L ata)is a
Hilbert-Schmidt operator on L*(T), by Lemma 3 it is an integral operator with kernel
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k, € L*(T x T). We have

ILIP = fo ()| Bada
_ f e, |Bada
0

:~L0°J%J;|@45ﬂqﬁdsdrada, (96)

and ®: L — k,(s, 7) is an isometry of H onto L*(R, x T x T) (again, by Lemma 3).
We identify H with L(R, x T x T) by the map &.

Let¢:R+xT—>R2bedeﬁnedby

(“’7‘)'_’ ra, (97)

fora € R, and r € T. Then the transformation to polar coordinates, g — g o ¢, is
an isometry of L*(R?) onto LA(R , T). We identify L*(R?) with L*(R_ x T).

Theorem 12 (Plancherel theorem). Let B, = By(L*(T)) be the Hilbert space of all
Hilbert-Schmidt operators on L(T). Put H, =B, foralla > 0 and H = fooo ®H ada.

Then the Fourier transform F : f — ]/‘\ can be extended uniquely to an isometry F of
L*(M(2)) onto H.

Proof. Parseval’s identity (Theorem 9) shows that Z is an isometry of .#(M(2)) into
H. Since #(M(2)) is dense in L2(M(2)) (Theorem 11), F can be extended uniquely
to an isometry F of L*(M(2)) into H. Now we need to show that F is surjective.

Since F is an isometry, the image Im F is closed in H. To prove the surjectivity of
F, it is suffices to show that Im % is dense in H. Moreover, since Im# C ImF, itis
sufficient to show that for any £ € H = L*(R? x T) and € > 0, there exists an element
f in #(M(2)) such that

Hk_k4t<e. (98)

By Lemma 4, we can identify L*(R? x T) = L*(R?) ® L*(T) and we can assume that
the element & in (98) is of the form k = g® for g € L*(R?)and h € L*(T). Moreover
since the space of trigonometric polynomials is dense L*(T), we cal assume without
loss of generality that b = y,, for some n € Z. Let u(ra) = y,(r)g(ra) for r € T and
a >0, where y, (r(a))=e"*. Then u € L*(R?). We shall use the fact that & (IR?) is
dense in L*(R?) to get an element v € & (R?) such tha t

| =2l <e. (99)

Let Z*v = w be the inverse Fourier transform of v on R?. Then w € #(R?)is a
rapidly decreasing function. Hence f = w ® y_,, is a rapidly decreasing function on

M(2),ie. f € S (M(2)). This f satisfies (98). Since

k] (s,7) = (Fw)(ra)y_,(rs ™) = v(ra)y_,(r)xs(s), (100)
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we have

=], =l @2 =],
= |G ) ® 20— (2=®) ® 2,
= |lxn (e =2)| ||l
=|lu—o||<e. (ro1)

]

We can use the Plancherel theorem to decompose the regular representation into

irreducible representations and prove an analogue of the Peter-Weyl theorem for
M(2).

Proposition 18. Let 7t be a unitary representation of a topological group G on a sep-
arable Hilbert space H. Let B, = B,(H ) be the Hilbert space of all Hilbert-Schmidt
operators on H and define a unitary representation of v of G on B, by setting

(g)A)=n(g)A forAeB,and geG. (102)

Then T can be decomposed as the direct sum of countable copies of 7. More precisely, let
(@,,) be an orthonormal basis of H, P, be the projection on Cp,, and

B ={AeB,|AP, =A}. (103)

Then we have

~

B — 7t (104)

B,= @B;’ and v
n=0
forallneN.

Finally, we have:

Theorem 13. Let L be the left regular representation of G = M(2). Then L is decomposed

as follows
LEJ @Tﬂada, (105)
0

where T, is the direct sum of countable copies of r ,:

T, = @ n, foralla>0. (106)

nez

4 Application to the quantum free particle

We end with a short and relatively informal discussion on the application of the
representation theory of M(2) to the problem of a free particle in quantum mechanics.
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At the beginning we saw a matrix representation of M(2)

we={[5 7]

From here, we can see that the Lie algebra of M(2) is the real vector space spanned by

i 0 01 0 i
L:[o o}’ Pl:[o o}’ PZ:[O o}’ (108)

with Lie bracket relations

foranya € Randz€ C } (107)

[L,P\]=P,, [L,P]=—P), [P,P,]=0. (109)

The so called Schrodinger representation 7t provides a unitary Lie algebra representa-
tion on the space L*(IR?). This is given by the operators

mP) =g )= (10
and
mg(L) :_<x13ix2 _xzaixl) (1x)
Hamiltonian operator for a free particle in two dimensions is
2 2
and solutions to the Schrédinger equation can be found as solutions to the eigenvalue
equation
ﬁ¢(x1’xz):_i<g—2+3_2>¢(x1’x2):E¢(x1,xz)- (113)
2m\ dx}  Ix}

The operators 7wg(L), wg(P;) and 7g(P,) commute with H and provide a represen-
tation of the Lie algebra of M(2) on the eigenspace of H with eigenvalue E. These
eigenspaces are infinite dimensional and are characterized by the non-negative eigen-
value E which has the physical interpretation of energy.

An element g(7(a), w) of M(2) acts on the space of solutions ¢/(x) = ¢(x,x,) by

g(r(a),w)- d(x) = d(r(—a)(x —w)), (114)

which is very similar to the left translation of the function ¢. In fact, this representa-
tion is the same as the exponentiated version of the Schrédinger representation 7.
For a translation t(w) € M(2),

t(w)- d(x)= ewlﬂs(P1)+wZﬂs(Pz)¢(x) = d(x—w), (115)
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and for a rotation r(a) € M(2),

r(@)- g(x) = e (x) = d(r(—a)x). (116)

By passing over to the “momentum space”, these representations can be shown to be
equivalent to the principal series of representations described in Section 2.
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