Analysis on the Euclidean Motion Group

Ayush Singh

July 23, 2023

I Isometries of \mathbb{R}^n

Definition 1 (isometry). An isometry of \mathbb{R}^n is a function $A : \mathbb{R}^n \to \mathbb{R}^n$ that preserves distances between points, i.e., for $x, y \in \mathbb{R}^n$ an isometry satisfies ||A(x) - A(y)|| = ||x - y|| where

$$||x|| = \sqrt{\sum_{j=1}^{n} x_j^2}.$$
 (1)

We denote the collection of isometries by

 $I(n) = \{A : \mathbb{R}^n \to \mathbb{R}^n \mid ||A(x) - A(y)|| = ||x - y|| \text{ for every } x, y \in \mathbb{R}^n \}.$

An isometry is said to *fix the origin* if it satisfies A(0) = 0. It can be shown that isometries that keep the origin fixed preserve the dot product on \mathbb{R}^n .

Proposition 1. A function $A : \mathbb{R}^n \to \mathbb{R}^n$ is an isometry satisfying A(0) = 0 if and only if A preserves dot products: $\langle A(x), A(y) \rangle = \langle x, y \rangle$ for all $x, y \in \mathbb{R}^n$.

Proof. Let A(0) = 0. Since A fixes the origin, we have ||x|| = ||A(x) - A(0)|| = ||A(x)||. Since $||x||^2 = \langle x, x \rangle$ we get

$$\begin{array}{l} \langle A(x) - A(y), A(x) - A(y) \rangle = \langle x - y, x - y \rangle \\ \Longrightarrow \langle A(x), A(x) \rangle - 2 \langle A(x), A(y) \rangle + \langle A(y), A(y) \rangle = \langle x, x \rangle - 2 \langle x, y \rangle + \langle y, y \rangle \\ \Longrightarrow \langle A(x), A(y) \rangle = \langle x, y \rangle$$

Conversely, assume that $\langle A(x), A(y) \rangle = \langle x, y \rangle$. We then have

$$||A(x) - A(y)||^{2} = \langle A(x) - A(y), A(x) - A(y) \rangle$$

= $\langle A(x), A(x) \rangle - 2 \langle A(x), A(y) \rangle + \langle A(y), A(y) \rangle$
= $\langle x, x \rangle - 2 \langle x, y \rangle + \langle y, y \rangle$
= $\langle x - y, x - y \rangle = ||x - y||^{2}.$ (2)

Hence, *A* is an isometry. Finally, setting x = y = 0 yields ||A(0)|| = 0, and therefore A(0) = 0.

Moreover, we can also show the following

Proposition 2. A function $A : \mathbb{R}^n \to \mathbb{R}^n$ is an isometry satisfying A(0) = 0 if and only if A is linear and orthogonal $AA^T = 1$.

Proof. It suffices to show that the map *A* is linear as orthogonality follows because *A* preserves inner products:

$$\langle x, y \rangle = \langle A(x), A(y) \rangle = \langle A^T A(x), y \rangle = \langle x, A A^T(y) \rangle$$
 (3)

for all $x, y \in \mathbb{R}^n$, and therefore $A^T A = AA^T = 1$. Let $\{e_j\}_{j=1,...,n}$ be the standard orthonormal basis for \mathbb{R}^n such that $\langle e_j, e_k \rangle = \delta_{jk}$. Then $\{A(e_j)\}$ is also an orthonormal basis for \mathbb{R}^n with $\langle A(e_j), A(e_k) \rangle = \delta_{jk}$. We shall first show that A(cx) = cA(x). Let $x \in \mathbb{R}^n$ and $c \in \mathbb{R}$, then A(cx) can be expanded in the orthogonal basis $\{A(e_j)\}$

$$A(cx) = \sum_{j=1}^{n} \langle A(cx), A(e_j) \rangle A(e_j) = \sum_{j=1}^{n} \langle cx, e_j \rangle A(e_j)$$
$$= c \sum_{j=1}^{n} \langle x, e_j \rangle A(e_j) = c \sum_{j=1}^{n} \langle A(x), A(e_j) \rangle A(e_j)$$
$$= cA(x).$$
(4)

Similarly, for $x, y \in \mathbb{R}^n$ we have

$$A(x+y) = \sum_{j=1}^{n} \langle A(x+y), A(e_j) \rangle A(e_j) = \sum_{j=1}^{n} \langle x, e_j \rangle A(e_j) + \sum_{j=1}^{n} \langle y, e_j \rangle A(e_j)$$

= $\sum_{j=1}^{n} \langle A(x), A(e_j) \rangle A(e_j) + \sum_{j=1}^{n} \langle A(y), A(e_j) \rangle A(e_j)$
= $A(x) + A(y).$ (5)

For the converse, we only note that, by definition, an orthogonal linear map preserves inner products and therefore by Proposition 1 it is an isometry which fixes the origin.

The following result shows that any isometry of \mathbb{R}^n can be written as a composition of a translation and an orthogonal map.

Theorem 1. Every isometry of \mathbb{R}^n can be written as $T \circ R$, where T is a translation and R is an orthogonal map.

Proof. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be an isometry. For $x \in \mathbb{R}^n$ define a translation T(x) := x + A(0) and an orthogonal map R(x) := A(x) - A(0) so that we get $T \circ R(x) = T(A(x) - A(0)) = A(x)$. It follows that R as defined above is orthogonal because it is an isometry which fixes the origin, A(0) = 0.

Conversely, if T_w is a translation by a vector w and R is an orthogonal map so that

 $A = T_w \circ R$, then for every $x, y \in \mathbb{R}$ we have

$$A(x) - A(y) = (R(x) + w) - (R(y) + w) = R(x) - R(y)$$
(6)

and therefore

$$||A(x) - A(y)|| = ||R(x) - R(y)|| = ||x - y||.$$
(7)

Hence, $T_w \circ R$ is an isometry.

With these results, we can show that isometries of \mathbb{R}^n are invertible and that the inverse of an isometry is also an isometry.

Proposition 3. Isometries of \mathbb{R}^n are invertible and the inverse of an isometry is also an isometry.

Proof. Let $A \in I(n)$ be an isometry. By Theorem 1, $A = T \circ R$ where T(x) = x + A(0)and R is an orthogonal map. As R is orthogonal, it is invertible with $R^{-1} = R^T$ and we define the inverse of *A* as

$$A^{-1}(x) = R^{-1}(x - A(0)).$$
(8)

To show that A^{-1} is an isometry, we note that

$$\left\|A^{-1}(x) - A^{-1}(y)\right\| = \left\|R^{-1}(x - A(0)) - R^{-1}(y - A(0))\right\|,\tag{9}$$

for all $x, y \in \mathbb{R}^2$, and since $R^{-1} = R^T$ is an orthogonal map and therefore an isometry, we have

$$\left\| R^{-1}(x - A(0)) - R^{-1}(y - A(0)) \right\| = \| (x - A(0)) - (y - A(0)) \| = \| x - y \|.$$

Since, if $A = T_{av} \circ R$ then $A^{-1} = T_{-1av} \circ R^{-1}$.

Hence, if $A = T_w \circ R$ then $A^{-1} = T_{-R^{-1}w} \circ R^{-1}$.

Hence, with the operation of function composition, the collection I(n) becomes a group. For any two isometries $A, B \in I(n)$ we can write $A = T_{w_1} \circ R_1$ and $B = T_{w_2} \circ R_2$ where $R_j \in O(n)$ and T_{w_i} are translations. We have the group composition for any $x \in \mathbb{R}^2$

$$A \circ B(x) = R_1 R_2(x) + w_1 + R_1(w_2) = T_{w_1 + R_1 w_2} \circ R_1 R_2.$$
 (10)

And the inverse $A^{-1} = (T_w \circ R)^{-1} = R^{-1} \circ T_{-w} = T_{-R^{-1}w} \circ R^{-1}$, by Proposition 3. Before moving ahead, we quickly note the following result.

Proposition 4. The groups \mathbb{R}^n and O(n) are subgroups of I(n).

1.1 Semidirect products

Definition 2 (semidirect product of groups). *Given a group K, a group N and an action* Φ *of K on N by automorphisms*

$$\Phi_k: N \to N \quad n \mapsto \Phi_k(n), \tag{II}$$

the semidirect product $N \rtimes K$ is the set of pairs $(n,k) \in N \times K$ with group composition *law*

$$(n_1, k_1)(n_2, k_2) = (n_1 \Phi_{k_1}(n_2), k_1 k_2).$$
(12)

Proposition 5. Semidirect product of groups as defined above is indeed a group.

Proof. Let $e_N \in N$ and $e_K \in K$ be the identities in N and K respectively. Then (e_N, e_K) is the identity for $N \rtimes K$

$$(e_N, e_K)(n, k) = (e_N \Phi_{e_K}(n), e_K k) = (n, k)$$
(13)

and

$$(n,k)(e_N,e_K) = (n\Phi_k(e_N),ke_K) = (n,k).$$
(14)

Given the identity, we can compute the inverse with respect to the group composition law by requiring $(n,k)(n,k)^{-1} = (e_N, e_K)$. We can verify that the inverse is given by $(n,k)^{-1} = (\Phi_{k^{-1}}(n^{-1}), k^{-1})$:

$$(n,k)^{-1}(n,k) = (\Phi_{k^{-1}}(n^{-1}),k^{-1})(n,k)$$

= $(\Phi_{k^{-1}}(n^{-1})\Phi_k(n),k^{-1}k)$
= $(e_N,e_K).$ (15)

Finally, we verify that the group multiplication is associative. For $n_1, n_2, n_3 \in N$ and $k_1, k_2, k_3 \in K$

$$\begin{split} [(n_1,k_1)(n_2,k_2)](n_3,k_3) &= (n_1 \Phi_{k_1}(n_2),k_1k_2)(n_3,k_3) \\ &= (n_1 \Phi_{k_1}(n_2) \Phi_{k_1k_2}(n_3),k_1k_2k_3) \\ &= (n_1 \Phi_{k_1}(n_2 \Phi_{k_2}(n_3)),k_1k_2k_3) \\ &= (n_1,k_1)(n_2 \Phi_{k_2}(n_3),k_2k_3) \\ &= (n_1,k_1)[(n_2,k_2)(n_3,k_3)]. \end{split}$$
(16)

Hence, $N \rtimes K$ is indeed a group.

Elements of $N \rtimes K$ of the kind (n, e_K) form a subgroup of $N \rtimes K$ isomorphic to N. Similarly, elements of the kind (e_N, k) form a subgroup isomorphic to K. In slight abuse of notation, when we shall say that N and K are subgroups of $N \rtimes K$ when we are actually referring to isomorphic copies of N and K inside $N \rtimes K$.

Proposition 6. Let $N \rtimes K$ be a semidirect product of groups. Then N is a normal subgroup of $N \rtimes K$.

Proof. We want to show that $gNg^{-1} = N$ for all $g = (n,k) \in N \rtimes K$. Let $(m,e_K) \in N \rtimes K$ for $m \in N$. We have

$$(n,k)(m,e_{K})(n,k)^{-1} = (n\Phi_{k}(m),k)(\Phi_{k^{-1}}(n^{-1}),k^{-1})$$

= $(n\Phi_{k}(m)\Phi_{k}(\Phi_{k^{-1}}(n^{-1})),kk^{-1})$
= $(n\Phi_{k}(m)n^{-1},e_{K}) \in N.$ (17)

Thus, given any $m \in N$, we have for any $(n,k) \in N \rtimes K$, $n^{-1}mn \in N$ and $\Phi_{k^{-1}}(n^{-1}mn) \in N$ so that $(n,k)(\Phi_{k^{-1}}(n^{-1}mn), e_K)(n,k)^{-1} = (m,e_K)$ and therefore $(m,e_K) \in gNg^{-1}$ where g = (n,k) and therefore $N \subset gNg^{-1}$. Conversely, any element of gNg^{-1} is of the form in (17) and hence $N = gNg^{-1}$ for all $g \in N \rtimes K$.

The factor K in $N \rtimes K$ need not be normal. We also note that the direct product is a special case of semidirect product when Φ_k is the trivial automorphism for all $k \in K$.

We have an action Φ of O(n) on \mathbb{R}^n by automorphisms: $\Phi_R : \mathbb{R}^n \to \mathbb{R}^n$ given naturally by $x \mapsto Rx$. We notice that the group composition law for a semidirect product $\mathbb{R}^n \rtimes O(n)$ is identical to the group composition law (10) for I(n). Explicitly, for $(w_1, R_1), (w_2, R_2) \in \mathbb{R}^n \rtimes O(n)$

$$(w_1, R_1)(w_2, R_2) = (w_1 + \Phi_{R_1}(w_2), R_1 R_2) = (w_1 + R_1 w_2, R_1 R_2).$$
(18)

Moreover, since Theorem 1 implies that every isometry can be written as a composition of a translation and an orthogonal transformation, we have the following characterization of the isometry group.

Theorem 2. The isometry group I(n) is the semidirect product of \mathbb{R}^n and O(n), i.e., $I(n) \cong \mathbb{R}^n \rtimes O(n)$.

Corollary 1. \mathbb{R}^n is a normal subgroup of of the isometriy group I(n).

Let $p: N \rtimes K \to K$ be the canonical surjection map, i.e., $(n,k) \mapsto k$. Then p is a group homomorphism. We verify this by taking any $(n_1,k_1), (n_2,k_2) \in N \rtimes K$ and noting that

$$p((n_1, k_1)(n_2, k_2)) = p(n_1 \Phi_{k_1}(n_2), k_1 k_2) = k_1 k_2$$

= $p((n_1, k_1))p((n_2, k_2)).$ (19)

Moreover, the kernel of p is N. This can be verified by noting that any (n, e_K) is mapped to e_K under p, therefore $N \subset \ker p$. Conversely, $(n,k) \in \ker p$ implies $k = e_K$ and $(n,k) = (n, e_K) \in N$. Now, the first isomorphism theorem gives us $K \cong (N \rtimes K)/N$.

Proposition 7. Let $G = N \rtimes K$ be a semidirect product of groups N and G. Then $G/N \cong K$.

Applying the above result to the isometry group gives

Corollary 2. $I(n)/\mathbb{R}^n \cong O(n)$.

1.2 Euclidean motion group

Elements of I(n) of the form $T_w \circ R$ where $R \in SO(n)$ are called orientation preserving isometries of \mathbb{R}^n . Orientation preserving isometries form a subgroup of I(n).

Definition 3 (Euclidean motion group). The Euclidean motion group in n-dimensions, denoted M(n), is the collection of all orientation preserving isometries of \mathbb{R}^n .

Just like in case of I(n), we have: $M(n) \cong \mathbb{R}^n \rtimes SO(n)$. Moreover, \mathbb{R}^n is a normal subgroup of M(n) and if $p: M(n) \to SO(n)$ is the canonical surjection map, then p is a homomorphism with ker $(p) = \mathbb{R}^n$ and $SO(n) \cong M(n)/\mathbb{R}^n$.

In the rest of this report we shall focus on the Euclidean motion group in two dimensions, i.e., n = 2.

In particular, as $\mathbb{R}^2 \cong \mathbb{C}$ and SO(2) $\cong U(1) \cong \mathbb{T}$, where \mathbb{T} is the 1-dimensional torus, we can make the identification $M(2) = \mathbb{C} \rtimes \mathbb{T}$. With this identification M(2) is the group of orientation preserving isometries of \mathbb{C} . We shall denote elements of M(2) by $g(z, \alpha) = t(z) \circ r(\alpha)$, where, for $w \in \mathbb{C}$, t(z)(w) = w + z is a translation and $r(\alpha)(w) = we^{i\alpha}$ is the action of U(1) on \mathbb{C} .

The Euclidean inner product on \mathbb{C} is given by $\langle z, w \rangle = \operatorname{Re}(z\overline{w})$.

M(2) can be embedded in $GL(2,\mathbb{C})$ as the subgroup with matrices of the form

$$M(2) = \left\{ \begin{bmatrix} e^{i\alpha} & z \\ 0 & 1 \end{bmatrix} \right| \text{ for any } \alpha \in \mathbb{R} \text{ and } z \in \mathbb{C} \right\}.$$
 (20)

Hence, M(2) is a linear Lie group. In fact, I(2) is a 3-dimensional Lie group with two connected components. M(2) is the connected component of I(2) containing the identity.

For future reference, we note the following relations.

1. $r(\alpha)r(\beta) = r(\alpha + \beta); r(\alpha)^{-1} = r(-\alpha)$ 2. $t(z)t(w) = t(z + w); t(z)^{-1} = t(-z)$ 3. $g(z, \alpha) = t(z)r(\alpha)$ 4. $g(z, \alpha)^{-1} = g(-r(-\alpha)z, -\alpha)$ 5. $g(z, \alpha)g(w, \beta) = g(z + r(\alpha)w, r(\alpha + \beta))$

2 Irreducible representations of M(2)

The compact group $\mathbb{T} \cong \mathbb{R}/2\pi\mathbb{Z}$ has the normalized Haar measure $dr = d\alpha/2\pi$. We start by looking at a family of unitary representations of M(2).

Theorem 3. Let $a \in \mathbb{R}^2$. There exists a unitary representation π_a of M(2) on $L^2(\mathbb{T})$ defined by

$$(\pi_a(g)F)(x) = e^{i\langle z, xa\rangle} F(r(\alpha)^{-1}x),$$
(21)

where $g = t(z)r(\alpha)$ and $F \in L^2(\mathbb{T})$.

Proof. We verify that π_a is unitary. For $g = t(z)r(\alpha) \in M(2)$ and $F, F' \in L^2(\mathbb{T})$

$$\langle \pi_a(g)F, \pi_a(g)F' \rangle = \int_{\mathbb{T}} F(r^{-1}x)\overline{F'(r^{-1}s)}dx,$$
 (22)

and since the measure on $\ensuremath{\mathbb{T}}$ is left invariant

$$\langle \pi_a(g)F, \pi_a(g)F' \rangle = \int_{\mathbb{T}} F(x)\overline{F'(x)}dx = \langle F, F' \rangle.$$
 (23)

We also verify that π_a as defined above is a group homomorphism of M(2) into $GL(L^2(\mathbb{T})$. Let $g_1 = t(z_1)r(\alpha_1)$ and $g_1 = t(z_2)r(\alpha_2)$, then for $F \in L^2(\mathbb{T})$

$$(\pi_a(g_1)\pi_a(g_2)F)(x) = \pi_a(g_1)e^{i\langle z_2, r(\alpha_2)^{-1}xa\rangle}F(r(\alpha_2)^{-1}x)$$

= $e^{i\langle z_1+r(\alpha_2)z_2,xa\rangle}F(r(\alpha_1+\alpha_2)^{-1}x)$
= $(\pi_a(g_1g_2)F)(x).$

Finally, we need to show that the mapping $g \mapsto \pi_a(g)$ from M(2) to $GL(L^2(\mathbb{T}))$, with strong operator topology on $GL(L^2(\mathbb{T}))$, is continuous. It is sufficient to prove that the map is continuous at identity, i.e., given $\epsilon > 0$ there exists a neighbourhood U of e in M(2) such that

$$||\pi_a(g)F - F|| < \epsilon \quad \text{for any } g \in U.$$
(24)

Since the case of F = 0 is trivial, assume $F \neq 0$. We can assume $\epsilon/3 < ||F||$, and since $C(\mathbb{T})$ is dense in $L^2(\mathbb{T})$, there exists $\phi \in C(\mathbb{T})$ satisfying

$$||F - \phi|| < \epsilon/3. \tag{25}$$

As $||F|| > \epsilon/3$, $\phi \neq 0$. Since ϕ is a continuous function on the compact group \mathbb{T} , it is bounded and uniformly continuous and therefore translations of ϕ are continuous, i.e., there exists a neighbourhood V of identity in \mathbb{T} such that the left regular representation satisfies

$$||L_r \phi - \phi||_{\infty} < \epsilon/6 \quad \text{for any } r \in V.$$
(26)

Moreover, since $|\langle w, ta \rangle| \le |w||a|$ for an $t \in \mathbb{T}$, there exists a neighbourhood W of o in \mathbb{R}^2 such that

$$|e^{i\langle w,ta\rangle} - 1| < \frac{\epsilon}{6||\phi||_{\infty}} \tag{27}$$

for every $w \in W$ and $t \in \mathbb{T}$. Let $U = t(W) \times V$. Then U is a neighbourhood of e in

M(2). If $g = t(z)r(\alpha) \in U$, then we have

$$\begin{aligned} \|\pi_{a}(g)\phi - \phi\| &= \sup_{t \in \mathbb{T}} \left| e^{i\langle z, ta \rangle} \phi(r^{-1}t) - \phi(t) \right| \\ &\leq \left\| e^{i\langle z, ta \rangle} (\phi(r^{-1}t) - \phi(t)) \right\|_{\infty} + \left\| (e^{i\langle z, ta \rangle} - 1)\phi(t) \right\|_{\infty} \\ &\leq \|L_{r}\phi - \phi\|_{\infty} + \left\| e^{i\langle z, ta \rangle} - 1 \right\|_{\infty} \|\phi\|_{\infty} \\ &< \epsilon/6 + \epsilon/6 = \epsilon/3. \end{aligned}$$
(28)

Finally, using the above inequality, (25) and the relations $||\pi_a(g)f|| = ||f||$, $||\phi|| \le ||\phi||_{\infty}$ we have

$$\begin{aligned} \|\pi_{a}(g)F - F\| &\leq \|\pi_{a}(g)F - \pi_{a}(g)\phi\| + \|\pi_{a}(g)\phi - \phi\| + \|\phi - F\| \\ &< \|\pi_{a}(g)(F - \phi)\| + \epsilon/3 + \epsilon/3 \\ &< \epsilon/3 + \epsilon/3 + \epsilon/3 < \epsilon. \end{aligned}$$
(29)

The next result shows that the right regular representation of $\mathbb T$ intertwines π_a with $\pi_{ra}.$

Theorem 4. Let R_r ($r \in \mathbb{T}$) be the right regular representation of \mathbb{T} . Then we have

$$R_r \circ \pi_a(g) = \pi_{ra}(g) \circ R_r \tag{30}$$

Proof. Let $r_0 \in \mathbb{T}$, $g = t(z)r \in M(2)$ and $F \in L^2(\mathbb{T})$, we have

$$(R_{r_0}\pi_a(g)F)(t) = \pi_a(g)F(tr_0) = e^{i\langle z, atr_0 \rangle}F(r^{-1}tr_0)$$

= $\pi_a(g)F(tr_0) = (\pi_a(g)R_{r_0})F(t)$ (31)

Since R_r is unitary and always non-trivial, the above result shows that if |a| = |b|, then π_a and π_b are unitarily equivalent, i.e., $\pi_a \cong \pi_b$, and it is sufficient to study representations π_a for which $a \ge 0$.

An explicit computation of the representation in Theorem 3 gives

Proposition 8. For $g = t(\rho e^{i\phi})r(\alpha)$ the unitary operator $\pi_a(g)$ ($a \ge 0$) is represented by

$$(\pi_a(g)F)(\theta) = e^{ia\rho\cos(\phi-\theta)}F(\theta-\alpha).$$
(32)

Proof. As $\langle z, a \rangle = \operatorname{Re} z\overline{a}$, we have $\langle z, r(\theta)a \rangle$. With the given g, we have $z = \rho e^{i\theta}$ and

$$\langle z, r(\theta)a \rangle = \operatorname{Re}(a\rho e^{i(\phi-\theta)}) = a\rho\cos(\phi-\theta).$$
 (33)

By Theorem 3 we get

$$(\pi_{a}(g)F)(\theta) = e^{i\langle z, r(\theta)a \rangle}F(\theta - \alpha)$$

= $e^{ia\rho\cos(\phi - \theta)}F(\theta - \alpha).$ (34)

Proposition 9. Let $F \in L^2(\mathbb{T})$. Then $\pi_a(r)F = F$ for every $r \in \mathbb{T}$ if and only if F is a constant function.

Proof. We notice that $\pi_a(r) = L_r$, the left regular representation of \mathbb{T} for every $r \in \mathbb{T}$. Write $F(\theta) = \sum_{n \in \mathbb{Z}} c_n \chi_n(\theta)$ and

$$\pi_{a}(r(\alpha))\left(\sum_{n\in\mathbb{Z}}c_{n}\chi_{n}\right)(\theta)=\sum_{n\in\mathbb{Z}}c_{n}e^{-in\alpha}\chi_{n}(\theta).$$
(35)

Hence, $F \in L^2(\mathbb{T})$ satisfies $\pi_a(g)F = F$ for every $\theta \in \mathbb{T}$ if and only if $c_n = e^{-in\alpha}c_n$ for every $n \in \mathbb{Z}$. This means $c_n = 0$ for $n \neq 0$ and $F = c_0\chi_0 = c_0$, a constant.

We now give a converse to Theorem 4.

Lemma 1. Let $\phi_a(g) = \langle \pi_a(g)1, 1 \rangle$, where 1 denotes the constant function that is 1 everywhere on \mathbb{T} . Then we have $\phi_a(g) = J_0(a\rho)$ for $g = t(\rho e^{i\phi})r(\alpha)$, where J_0 is the Bessel function of order o.

Proof. By Proposition 8 we have

$$\begin{split} \phi_a(t(\rho e^{i\phi})r(\alpha)) &= \langle \pi_a(t(\rho e^{i\phi})r(\alpha)1,1\rangle \\ &= \frac{1}{2\pi} \int_0^{2\pi} e^{ia\rho\cos(\phi-\theta)} d\theta \\ &= \frac{1}{2\pi} \int_0^{2\pi} e^{ia\rho\cos\theta} d\theta \\ &= J_0(a\rho), \end{split}$$
(36)

where the last equality follows from the definition of the Bessel function.

Theorem 5. Let $a, b \in \mathbb{R}^2$. Then π_a is equivalent to π_b if and only if |a| = |b|.

Proof. It is sufficient to prove that if $\pi_a \cong \pi_b$ for $a, b \ge 0$, then a = b.

If $\pi_a \cong \pi_b$, then there exists a unitary operator T on $L^2(\mathbb{T})$ such that $T\pi_a(g) = \pi_b(g)T$ for all $g \in M(2)$. If we denote by 1 the constant function with value 1 on \mathbb{T} , then $(\pi_b(r)T)(1) = (T\pi_a(r))(1) = T(1)$ for every $r \in \mathbb{T}$. Hence, T(1) = c, a

constant, by Proposition 9. Since *T* is unitary, |c| = 1. We have

$$\begin{split} \phi_a(g) &= \langle \pi_a(g)1, 1 \rangle = \langle T \pi_{(g)}1, T1, \rangle \\ &= \langle \pi_b(g)T1, T1 \rangle = |c|^2 \langle \pi_b(g)1, 1 \rangle \\ &= \phi_b(g) \quad \text{for any } g \in M(2). \end{split}$$
(37)

By Lemma 1, we get

$$J_0(a\rho) = J_0(b\rho) \quad \text{for every } \rho \in \mathbb{R} .$$
 (38)

We know that

$$J_0(x) = \frac{1}{2\pi} \int_0^{2\pi} e^{ix\cos\theta} d\theta, \qquad (39)$$

differentiating twice gives

$$J_0''(0) = \frac{-1}{2\pi} \int_0^{2\pi} \cos^2\theta d\theta < 0.$$
 (40)

If we put $f_a(x) = J_0(ax)$, then $f_a''(0) = a^2 J_0''(0)$. As $J_0(a\rho) = J_0(b\rho)$ we have $a^2 J_0''(0) = b^2 J_0''(0)$ and hence $a^2 = b^2$.

We have shown that if $\pi_a \cong \pi_b$ then |a| = |b|.

This next result shows that the representations π_a are irreducible for |a| > 0.

Lemma 2. The limit

$$\lim_{x \to 0} \left\| \frac{e^{iaxf(\theta)} - 1}{x} - iaf(\theta) \right\| = 0$$
(41)

holds.

Proof.

$$\left\|\frac{e^{iaxf(\theta)} - 1}{x} - iaf(\theta)\right\|_{\infty} = \frac{1}{|x|} \left\|e^{iaxf(\theta)} - (1 + iaxf(\theta))\right\|_{\infty}$$
(42)

By Taylor expansion of e^x

$$e^{iaxf(\theta)} = 1 + iaxf(\theta) + \frac{(iaxf(\theta))^2}{2!} + o(x^3),$$
 (43)

we get

$$\left\|\frac{e^{iaxf(\theta)}-1}{x}-iaf(\theta)\right\|_{\infty} \le \frac{1}{|x|} \left\|\frac{(iaxf(\theta))^2}{2}\right\|_{\infty} \le \frac{a^2}{2}|x|.$$
(44)

Hence, the limit holds.

Theorem 6. If |a| > 0, the unitary representation $(\pi_a, L^2(\mathbb{T}))$ is irreducible.

Proof. By Theorem 4, we can assume a > 0 without loss of generality. To show irreducibility, it is sufficient to prove that if a projection operator P on $L^2(\mathbb{T})$ satisfies

$$P\pi_a(g) = \pi_a(g)P$$
 for every $g \in M(2)$, (45)

then P = 0 or P = 1, i.e., $L^2(\mathbb{T})$ has no non-trivial invariant subspaces.

For $n \in \mathbb{Z}$, put $\chi_n(\theta) = e^{in\theta}$ and define $f_n := P\chi_n$. For $g = t(0)r(\alpha) \in M(2)$ we have $(\pi_a(r(\alpha))f_n)(\theta) = f_n(\theta - \alpha)$ and therefore

$$f_n(\theta - \alpha) = (\pi_a(r(\alpha))P\chi_n)(\theta) = (P\pi_a(r(\alpha)))(\theta)$$
$$= P\chi_n(\theta - \alpha) = P(e^{in(\theta - \alpha)}) = e^{-in\alpha}f_n(\theta).$$
(46)

With $\theta = \alpha$, we conclude $f_n(\alpha) = c_n e^{in\alpha}$, where $c_n = f_n(0)$ is a constant, for every $n \in \mathbb{Z}$. For $x \in \mathbb{R}$ we have (by Proposition 8)

$$P(e^{iax\cos\theta}e^{in\theta}) = (P\pi_a(t(x)))(e^{in\theta}) = (\pi_a(t(x))P\chi_n)(\theta)$$
$$= c_n(\pi_a(t(x))\chi_n)(\theta) = c_n e^{iax\cos\theta}e^{in\theta}$$
(47)

and therefore

$$P\left(\frac{e^{iax\cos\theta}-1}{x}e^{in\theta}\right) = c_n \frac{e^{iax\cos\theta}-1}{x}e^{in\theta}.$$
 (48)

By Lemma 2 we get $P(e^{in\theta}\cos\theta) = c_n e^{in\theta}\cos\theta$. Similarly, we have $P(e^{iax\sin\theta}e^{in\theta}) = c_n e^{iax\cos\theta}e^{in\theta}$ and by Lemma 2 we get $P(e^{in\theta}\sin\theta) = c_n e^{in\theta}\sin\theta$. Together these prove

$$P\chi_{n+1} = P(e^{i\theta}e^{in\theta}) = P(e^{in\theta}\cos\theta + ie^{in\theta}\sin\theta)$$

= $c_n e^{in\theta}\cos\theta + ic_n e^{in\theta}\sin\theta = c_n\chi_{n+1}$ for every $n \in \mathbb{Z}$. (49)

Hence, $c_{n+1} = c_n$ and $c_n = c_0$ for every $n \in \mathbb{Z}$. Since χ_n is an orthonormal basis for \mathbb{T} , we get $P = c_0 \mathbb{1}$, and as P is a projection operator $P^2 = P \implies c_0^2 = c_0$, therefore $c_0 = 0$ or $c_0 = 1$. We have proved that P = 0 or $P = \mathbb{1}$.

The family of representations $P = \{\pi_a | a > 0\}$ is called the *principal series* of irreducible representations of M(2).

All representations in the principal series are infinite dimensional. We will now look at some one-dimensional representations of M(2). Let $p: M(2) \to \mathbb{T}$ be the canonical projection of $M(2) = \mathbb{C} \rtimes \mathbb{T}$ onto \mathbb{T} . Any irreducible representation χ of \mathbb{T} defines a unitary representation $\chi \circ p$ of M(2). The unitary dual of \mathbb{T} is

$$\widehat{\mathbb{T}} = \{\chi_n : r(\alpha) \mapsto e^{in\alpha} | n \in \mathbb{Z}\}.$$
(50)

All irreducible representations of \mathbb{T} are one-dimensional, therefore the representations $\chi_n \circ p$ of M(2) are also irreducible.

Remarkably, these one-dimensional representations are the only irreducible unitary representations of M(2) other than the principal series.

Theorem 7. Any irreducible unitary representation π of the Euclidean motion group M(2) is equivalent to one of the elements in the set

$$\widehat{M(2)} = \{\pi_a | a > 0\} \cup \{\chi_n \circ p | n \in \mathbb{Z}\}.$$
(51)

No two elements of $\widehat{M(2)}$ are equivalent to each other.

3 Fourier transforms

Proposition 10. Let $g = t(z)r(\alpha) = t(x + iy)r(\alpha)$. Then dg = dzdr = dxdydr is a left invariant Haar measure on M(2). It is also right invariant and M(2) is a unimodular group.

Proof. We have $t(z_1)r_1t(z_2)r_2 = t(z_1 + r_1z_2)r_1r_2$ and the Lebesgue measure dz on \mathbb{C} is invariant under rigid motion $z_1 \mapsto z_1 + r_1z_2$. We have already seen that dr is the Haar measure on \mathbb{T} , therefore we have $d(g_1g_2) = dg_2$. Similarly, $d(g_2, g_1) = dg_2$ and M(2) is a unimodular group.

The measure on M(2) given by $dg = dz d\alpha/(2\pi)^2 = dm(z)dr$ is called the *normal-ized Haar measure* on *G*.

Definition 4 (Fourier transform). The Fourier transform \hat{f} of a function $f \in L^1(M(2))$ is a function on $R^*_+ = (0, \infty)$ with values in $B(L^2(\mathbb{T}))$, the Banach space of bounded linear operators on $L^2(\mathbb{T})$, defined by

$$\widehat{f}(a) = \int_{M(2)} f(g) \pi_a(g^{-1}) dg \quad \text{for } a > 0,$$
(52)

where π_{a} is a principal series unitary representation.

Proposition 11. If f and h are integrable function on M(2), then we have

I.
$$\left\|\widehat{f}(a)\right\| \leq \|f\|_1$$
, for any $a > 0$
2. $\widehat{f * h} = \widehat{h}\widehat{f}$, and
3. $\widehat{(f^*)}(a) = (\widehat{f}(a))^*$

Proof. I. Let $u \in L^2(\mathbb{T})$. We have

$$\left\|\widehat{f}(a)u\right\| = \left\|\int_{M(2)} f(g)\pi_{a}(g^{-1})udg\right\| \le \int_{M(2)} |f(g)| \left\|\pi_{a}(g^{-1})u\right\| dg, \quad (53)$$

and since $\pi_a(g^{-1})$ is unitary, and dg is the normalized Haar measure

$$\left\|\widehat{f}(a)u\right\| \le \|f\|_1 \|u\|.$$
 (54)

2. We use Fubini's theorem and right invariance of dg to simplify $\widehat{f * h}(a)$

$$\widehat{f * h}(a) = \int_{M(2)} f * h(g)\pi_{a}(g^{-1})dg$$

$$= \int_{M(2)} \left[\int_{M(2)} f(gs^{-1})h(s)ds \right] \pi_{a}(g^{-1})dg$$

$$= \int_{M(2)} \left[\int_{M(2)} f(gs^{-1})\pi_{a}(g^{-1})dg \right] h(s)ds$$

$$= \int_{M(2)} \left[\int_{M(2)} f(g)\pi_{a}(s^{-1}g^{-1})dg \right] h(s)ds$$

$$= \int_{M(2)} h(s)\pi_{a}(s^{-1})ds \int_{M(2)} f(g)\pi_{a}(g^{-1})dg$$

$$= \widehat{h}(a)\widehat{f}(a) = \widehat{h}\widehat{f}(a).$$
(55)

3. Let $u, v \in L^2(\mathbb{H})$. We have

$$\langle \widehat{f^*}(a)u, v \rangle = \int_{M(2)} \langle f^*(g)\pi_a(g^{-1})u, v \rangle dg$$

$$= \int_{M(2)} \langle \overline{f(g^{-1})}\pi_a(g^{-1})u, v \rangle dg$$

$$= \int_{M(2)} \langle u, f(g^{-1})\pi_a(g)v \rangle dg$$

$$= \langle u, \widehat{f}(a)v \rangle = \langle (\widehat{f}(a))^*u, v \rangle$$
(56)

Hence $\widehat{f^*}(a) = \widehat{f}(a)^*$.

г	_	_	٦	
			1	
			Т	
			Т	
-	-	-	J	

We define the notion of a rapidly decreasing function analogously to the case of \mathbb{R}^n . **Definition 5.** A complex valued C^{∞} -function f on M(2) is called rapidly decreasing if for any $N \in \mathbb{N}$ and $m \in \mathbb{N}^3$ we have

$$p_{N,m}(f) = \sup_{\alpha \in \mathbb{R}, z \in \mathbb{C}} \left| (1+|z|^2)^N (D^m f)(z,\alpha) \right| < \infty,$$
(57)

where

$$D^{m} = \left(\frac{1}{i}\frac{\partial}{\partial x}\right)^{m_{1}} \left(\frac{1}{i}\frac{\partial}{\partial y}\right)^{m_{2}} \left(\frac{1}{i}\frac{\partial}{\partial \alpha}\right)^{m_{3}}.$$
 (58)

The vector space of all rapidly decreasing functions on a group G is denoted by $\mathscr{S}(G)$. The following result shows that $\hat{f}(a)$ is an integral operator on $L^2(\mathbb{T})$ with its kernel given by

$$k_f^a(s,r) = \int_{\mathbb{R}^2} f(z,rs^{-1})e^{-i\langle z,ra\rangle} dm(z).$$
(59)

Proposition 12. If f is a rapidly decreasing function on M(2) and k_f^a is as defined above, then we have

$$(\widehat{f}(a)F)(s) = \int_{\mathbb{T}} k_f^a(s,r)F(r)dr$$
(60)

for any a > 0 and $F \in L^2(\mathbb{T})$.

Proof. Let $F, F' \in L^2(\mathbb{T})$ and $g \in M(2)$ with g = t(z)r and $g^{-1} = t(-r^{-1}z)r^{-1}$. We have

$$\begin{split} \langle \hat{f}(a)F,F'\rangle &= \int_{\mathcal{M}(2)} f(g) \langle \pi_a(g^{-1})F,F'\rangle dg \\ &= \int_{\mathbb{R}^2} \int_{\mathbb{T}} f(z,r) \langle \pi_a(t(-r^{-1}z)r^{-1})F,F'\rangle dm(z)dr \\ &= \int_{\mathbb{R}^2} \int_{\mathbb{T}} f(z,r) \Big[\int_{\mathbb{T}} e^{-i\langle r^{-1}z,sa\rangle} F(rs)\overline{F'(s)}ds \Big] dm(z)dr \\ &= \int_{\mathbb{T}} \int_{\mathbb{T}} \Big[\int_{\mathbb{R}^2} f(z,rs^{-1})e^{-i\langle z,ra\rangle} dm(z) \Big] F(r)\overline{F'(s)}dsdr \\ &= \int_{\mathbb{T}} \left[\int_{\mathbb{T}} k_f^a(s,r)F(r)dr \Big] \overline{F'(s)}ds. \end{split}$$

If we denote the ordinary Fourier transform of $z \mapsto f(z, r)$ by $\tilde{f}(\xi, r)$:

$$\widetilde{f}(\xi,r) = \int_{\mathbb{R}^2} f(z,r) e^{-i\langle z,\xi\rangle} dm(z),$$
(61)

the kernel k_f^a is given by

$$k_f^a(s,r) = \tilde{f}(ra,rs^{-1}). \tag{62}$$

3.1 Fourier inversion formula

Definition 6. A bounded linear operator A on a separable Hilbert space H is said to be of trace class if for any orthonormal basis $(\phi_n)_{n \in \mathbb{N}}$ of H, the series

$$\sum_{n \in \mathbb{N}} \langle A\phi_n, \phi_n \rangle \tag{63}$$

converges to a finite sum which is independent of the choice of (ϕ_n) .

The sum in (6_3) is called the *trace* of A and is denoted by TrA.

If A is of trace class then the series (63) converges absolutely, because the sum is invariant under a change of ordering of ϕ_n s.

The following result gives a sufficient condition for an operator to be of trace class.

Proposition 13. Let H be a separable Hilbert space. If a bounded linear operator A on

H satisfies

$$\sum_{n,m\in\mathbb{N}} |\langle A\phi_n, \phi_m \rangle| < \infty \tag{64}$$

for a fixed orthonormal basis $(\phi_n)_{n \in \mathbb{N}}$, then A is of trace class. Moreover, if U and V are two bounded operators on H, then UAV, AVU, and VUA are of trace class and have the same trace.

r

Proof. Let $a_{m,n} = \langle A\phi_m, \phi_n \rangle$, $u_{m,n} = \langle U\phi_m, \phi_n \rangle$, and $v_{n,m} = \langle V\phi_m, \phi_n \rangle$. We have

$$A\phi_m = \sum_{n=0}^{\infty} a_{m,n}\phi_n, \quad U\phi_m = \sum_{n=0}^{\infty} u_{m,n}\phi_n \quad \text{and} \quad V\phi_m = \sum_{n=0}^{\infty} v_{m,n}\phi_n.$$

Hence

$$UAV\phi_m = \sum_{n,k,l=0}^{\infty} u_{m,n} a_{n,k} v_{k,l} \phi_l, \qquad (65)$$

and with Schwarz inequality in l^2 gives

$$\sum_{m=0}^{\infty} |u_{m,n}a_{n,k}v_{k,m}| \le |a_{n,k}| \left(\sum_{m=0}^{\infty} |u_{m,n}|^2 \right)^{1/2} \left(\sum_{m=0}^{\infty} |u_{k,m}|^2 \right)^{1/2} = |a_{n,k}| ||U^* \phi_n||||V^* \phi_k|| j \le |a_{n,k}|||U^*||||V^*||$$
(66)

and finally we have

$$\sum_{m=0}^{\infty} |\langle UAV\phi_m, \phi_m \rangle| \le \sum_{n,k=0}^{\infty} |a_{n,k}|| |U^*|| ||V^*|| < \infty,$$
(67)

by hypothesis. Hence, the series $\sum_{m,n,k} u_{m,n} a_{n,k} v_{k,m}$ converges absolutely and we can change the order of terms freely. We use Parseval's equality to get

$$\sum_{m} \langle UAV\phi_{m}, \phi_{n} \rangle = \sum_{m} \langle V\phi_{m}, A^{*}U^{*}\phi_{n} \rangle$$
$$= \sum_{m,n} \langle V\phi_{m}, \phi_{n} \rangle \langle \phi_{n}, A^{*}U^{*}\phi_{m} \rangle$$
$$= \sum_{m,n,k} \langle V\phi_{m}, \phi_{n} \rangle \langle A\phi_{n}, \phi_{k} \rangle \langle U\phi_{k}, \phi_{m} \rangle$$
$$= \sum_{k} \langle AVU\phi_{k}, \phi_{k} \rangle = \sum_{n} \langle VUA\phi_{n}, \phi_{n} \rangle.$$
(68)

Let $(\psi_n)_{n\in\mathbb{N}}$ be another orthonormal basis of H, then the operator W, defined by $W\phi_n = \psi_n$ is unitary and

$$\sum_{m=0}^{\infty} \langle UAV\psi_m, \psi_m \rangle = \sum_{m=0}^{\infty} \langle UAV\phi_m, \phi_m \rangle, \tag{69}$$

Hence, *UAV* is of trace class, and in particular, putting U = V = 1 shows that *A* is of trace class. Similarly, *AVU* and *VUA* are also of trace class and (68) shows that Tr(UAV) = Tr(AVU) = Tr(VUA).

Proposition 14. If $k(\theta, \phi)$ is a C^2 -function on \mathbb{T}^2 , then the Fourier series

$$\sum_{m,n\in\mathbb{Z}}a_{m,n}e^{i(m\theta+n\phi)}$$
(70)

of k, where

$$a_{m,n} = \frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} k(\theta, \phi) e^{-i(m\theta + n\phi)} d\theta d\phi,$$
(71)

converges absolutely and uniformly.

Proposition 15. If $k(\theta, \phi)$ is a C^2 -function on \mathbb{T}^2 , then the operator L on $L^2(\mathbb{T})$ defined by

$$(LF)(\theta) = \frac{1}{2\pi} \int_0^{2\pi} k(\theta, \phi) F(\phi) d\phi$$
(72)

is of trace class with trace

$$\operatorname{Tr} L = \frac{1}{2\pi} \int_{0}^{2\pi} k(\theta, \theta) d\theta.$$
(73)

Proof. Let $\chi_n(\theta) = e^{in\theta}$, then $(\chi_n)_{n \in \mathbb{Z}}$ is an orthonormal basis of $L^2(\mathbb{T})$. By the previous proposition, the Fourier series of k converges and uniformly. We have

$$\langle L\chi_m, \chi_n \rangle = \frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} k(\theta, \phi) e^{i(m\phi - n\theta)} d\phi d\theta = a_{m, -n}, \tag{74}$$

and it follows that

$$\sum_{m,n\in\mathbb{Z}} |\langle L\chi_m,\chi_n\rangle| < \infty \tag{75}$$

and by Proposition 13, *L* is of trace class. As the series $k(\theta, \theta)$ converges uniformly on \mathbb{T} , we can integrate it term by term and get

$$\frac{1}{2\pi} \int_{0}^{2\pi} k(\theta, \theta) d\theta = \sum_{m,n \in \mathbb{Z}} a_{m,n} \int_{0}^{2\pi} e^{i(m+n)\theta} d\theta$$
$$= \sum_{m,n \in \mathbb{Z}} a_{m,n} \delta_{m+n,0}$$
$$= \sum_{m \in \mathbb{Z}} a_{m,-m} = \sum_{m \in \mathbb{Z}} \langle L\chi_m, \chi_m \rangle = \operatorname{Tr} L.$$
(76)

The above series of propositions culminates in the Fourier inversion formula for rapidly decreasing functions.

Theorem 8 (inversion formula). Any function $f \in \mathcal{S}(M(2))$ may be recovered from its Fourier transform \hat{f} by the formula

$$f(g) = \int_0^\infty \operatorname{Tr}\left(\pi_a(g)\widehat{f}(a)\right) a da.$$
(77)

In particular, $\pi_a(g)\hat{f}(a)$ and $\hat{f}(a)$ are of trace class.

Proof. By Proposition 12 $\hat{f}(a)$ can be seen as an integral operator with a smooth kernel, and therefore we can use Proposition 15 to say that $\hat{f}(a)$ is of trace class. Let g = t(z)u for $u \in \mathbb{T}$; then $\pi_a(g)\hat{f}(a)$ is an integral operator

$$(\pi_{a}(g)\widehat{f}(a)F)(x) = e^{i\langle z, xa\rangle}(\widehat{f}(a)F)(u^{-1}s)$$

$$= \int_{\mathbb{T}} e^{i\langle z, xa\rangle} k_{f}^{a}(u^{-1}x, r)F(r)dr$$

$$= \int_{\mathbb{T}} e^{i\langle z, xa\rangle} \widetilde{f}(ra, rx^{-1}u)F(r)dr, \qquad (78)$$

with kernel $m_f^a(g; x, r) = e^{i\langle z, xa \rangle} \tilde{f}(ra, rs^{-1}u)$. By Proposition 15,

$$\operatorname{Tr}(\pi_{a}(g)\widehat{f}(a)) = \int_{\mathbb{T}} m_{f}^{a}(g;r,r)dr$$
$$= \int_{\mathbb{T}} e^{i\langle z,ra\rangle} \widetilde{f}(ra,u)dr$$
(79)

For fixed r, the function $f_r : z \mapsto f(z, r)$ is a rapidly decreasing on \mathbb{R}^2 , and

$$\widetilde{f}(a,r) = \int_{\mathbb{R}}^{2} f(z,r) e^{-i\langle z,a \rangle} dm(z)$$
(80)

is the Fourier transform on \mathbb{R}^2 ; hence, we can use the inversion formula for $f_r \in \mathscr{S}(\mathbb{R}^2)$ to get

$$f(g) = f(z, u) = \int_{\mathbb{R}^2} \widetilde{f}(\xi, u) e^{i\langle z, \xi \rangle} dm(\xi)$$

=
$$\int_0^\infty \int_{\mathbb{T}} \widetilde{f}(ra, u) e^{i\langle z, ra \rangle} a da dr$$

=
$$\int_0^\infty \operatorname{Tr}(\pi_a(g) \widehat{f}(a)) a da, \qquad (81)$$

where in the second line we transformed to polar coordinates, and used Fubini's theorem to get to the last line by integrating over \mathbb{T} .

Proposition 16. If f and h belong to $\mathcal{S}(M(2))$, then f * h and $f^*(g) = \overline{f(g^{-1})}$ also belong to $\mathcal{S}(M(2))$.

Next, we want to prove the Parseval equality for Fourier transforms.

3.2 Parseval identity

Let H_1 and H_2 be two separable Hilbert spaces. The set of bounded linear operators from H_1 into H_2 is denoted by $B(H_1, H_2)$. Let $(\phi_n)_{n \in \mathbb{N}}$ be an orthonormal basis of

 H_1 . For any element A of $B(H_1, H_2)$ put

$$||A||_{2}^{2} = \sum_{n \in \mathbb{N}} ||A\phi_{n}||^{2}.$$
(82)

Let $(\phi_n)_{n \in \mathbb{N}}$ be an orthonormal basis of H_2 . If $(\phi'_n)_{n \in \mathbb{N}}$ is an orthonormal basis of H_1 , by Parseval's equality we have

$$\sum_{n \in \mathbb{N}} ||A\phi_m||^2 = \sum_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}} |\langle A\phi_n, \psi_m \rangle|^2 = \sum_{m \in \mathbb{N}} ||A^*\psi_m||^2$$
$$= \sum_{m \in \mathbb{N}} \sum_{n \in \mathbb{N}} |\langle A^*\psi_m, \phi'_n \rangle|^2 = \sum_{n \in \mathbb{N}} ||A\phi'_n||^2.$$
(83)

Hence, $||A||_2$ is independent of the choice of basis (ϕ_n). Moreover, the above calculation also shows that $||A||_2 = ||A^*||_2$.

Definition 7. An operator $A \in B(H_1, H_2)$ is called a Hilbert-Schmidt operator if $||A||_2 < \infty$. The set of Hilbert-Schmidt operators is denoted by $B_2(H_1, H_2)$.

 $B_2(H_1, H_2)$ is a subspace of $B(H_1, H_2)$ and $\|\cdot\|_2$ is a norm on $B_2(H_1, H_2)$ called the *Hilbert-Schmidt* norm. Moreover, if $A, B \in B_2(H_1, H_2)$, then the inner product

$$\langle A, B \rangle = \sum_{n \in \mathbb{N}} \langle A \phi_n, B \phi_n \rangle \tag{84}$$

is well defined and $B_2(H_1, H_2)$ becomes a Hilbert space. From the above definition it is easy to see that B^*A is a trace class operator on H_1 with $\operatorname{Tr} B^*A = \langle A, B \rangle$. As a consequence we have the following.

Proposition 17. $A \in B(H_1, H_2)$ is a Hilbert-Schmidt operator if and only if A^*A is a trace class operator on H_1 .

We can now prove Parseval's equality for Fourier transforms.

Theorem 9 (Parseval's equality). If f belongs to $\mathcal{S}(M(2))$, then $\hat{f}(a)$ is a Hilbert-Schmidt operator on $L^2(\mathbb{T})$ and it satisfies

$$\int_{M(2)} |f(g)|^2 dg = \int_0^\infty \left\| \widehat{f}(a) \right\|_2^2 a da.$$
 (85)

Proof. Define $h := f * f^*$. By Proposition 16 $h \in \mathcal{S}(M(2))$ is also a rapidly decreasing function. By Proposition 15 $\hat{h}(a)$ is of trace class and $\operatorname{Tr} \hat{h}(a) = \operatorname{Tr}(\widehat{f^*}(a)\widehat{f}(a)) = \operatorname{Tr}(\widehat{f}(a)^*\widehat{f}(a))$ (by Proposition 11). Hence, we have $\hat{h}(a) = \|\widehat{f}(a)\|_2^2$ and by Proposition 17, $\widehat{f}(a)$ is a Hilbert-Schmidt operator. By Theorem 8 we have

$$h(e) = \int_0^\infty \operatorname{Tr}(\widehat{h}(a)) a da = \int_0^\infty \left\| \widehat{f}(a) \right\|_2^2 a da, \tag{86}$$

and by definition of the convolution product, we have

$$h(e) = f * f^{*}(e) = \int_{M(2)} f(g)\overline{f(g)}dg = \int_{M(2)} |f(g)|^{2}dg.$$
(87)

In general, we cannot define the character of the representation π_a as the unitary operator $\pi_a(g)$ need not be of trace class and the series

$$\sum_{n\in\mathbb{Z}} \langle \pi_a(g)\chi_n,\chi_n \rangle \tag{88}$$

may not converge. One way out is to look at the above series as a distribution on G = M(2).

Definition 8 (distribution). Let $C_c(G)$ be the space of all complex valued C^{∞} -functions on G with compact support. A continuous linear form on $C_c(G)$ is called a distribution on G.

We define the character χ_a as the linear form

$$\chi_a: f \mapsto \sum_{n \in \mathbb{Z}} \int_G f(g) \langle \pi_a(g) \chi_n, \chi_n \rangle dg = \sum_{n \in \mathbb{Z}} \langle \pi_a^f \chi_n, \chi_n \rangle = \operatorname{Tr} \pi_a^f$$
(89)

for $f \in C_c(G)$, where

$$\pi_a^f = \int_G f(g)\pi_a(g)dg. \tag{90}$$

If we let $h(g) = f(g^{-1})$, then $\pi_a^f = \hat{h}(a)$ and we write $h(re^{i\phi}, \alpha) = h[r, \phi, \alpha]$.

We have the following characterization of distributions.

Theorem 10. For any fixed a > 0, the linear form $\chi_a : f \mapsto \pi_a^f$ is a distribution on M(2). Moreover, χ_a is equal to $J_0(a|z|) \otimes \delta(\alpha)$, where J_0 is the Bessel function of order o and δ is the Dirac measure at 0 on \mathbb{T} .

Proof. By Propositions 12 and 15 π_a^f is of trace class and

$$\operatorname{Tr} \pi_{a}^{f} = \frac{1}{2\pi} \int_{0}^{2\pi} k_{b}^{a}(\theta,\theta) d\theta$$

$$= \frac{1}{(2\pi)^{2}} \int_{0}^{\infty} \int_{0}^{2\pi} \int_{0}^{2\pi} h[r,\phi,0] e^{iar\cos(\phi-\theta)} r dr d\phi d\theta$$

$$= \int_{\mathbb{R}^{2}} f(-z,0) J_{0}(a|z|) dm(z)$$

$$= \int_{\mathbb{T}} \int_{\mathbb{R}^{2}} f(z,\alpha) J_{0}(a|z|) dm(z) d\delta(\alpha).$$
(91)

We now want to extend the Fourier transform uniquely from $\mathcal{S}(M(2))$ to an isometry of $L^2(M(2))$.

3.3 Plancherel theorem

Lemma 3. Let $H_1 = L^2(X, \mu)$, $H_2 = L^2(Y, \nu)$, and let Φ be the mapping of $H = L^2(X \times Y, \mu \times \nu)$ into the space $B_2(H_2, H_1)$ of Hilbert-Schmidt operators which maps $k \in H$ into the integral operator K with the kernel k. Then Φ is an isometry of H onto $B_2(H_2, H_1)$.

Definition 9. Let X, Y be two sets and C(X), C(Y) and $C(X \times Y)$ be the vector spaces of all complex valued functions on X, Y and $X \times Y$ respectively. For any two functions $f \in C(X)$ and $g \in C(Y)$, define

$$(f \circledast g)(x, y) = f(x)g(y) \tag{92}$$

such that $f \circledast g \in C(X \times Y)$.

Since the mapping $(f, g) \mapsto f \circledast g$ is bilinear from $C(X) \times C(Y)$ into $C(X \times Y)$, there exists a linear map $\phi : C(X) \otimes C(Y) \to C(X \times Y)$ such that

$$\phi(f \otimes g) = f \otimes g, \tag{93}$$

 ϕ is injective. If we let $\phi(b) = 0$, then we have

$$b = \sum_{m,n} a_{m,n} f_m \otimes g_n, \tag{94}$$

where (f_m) and (g_n) are linearly independent families in C(X) and C(Y) respectively. Since

$$\sum_{m,n} a_{m,n} f_m(x) g_n(x) = 0 \quad \text{for all } x \in X, y \in Y$$
(95)

we have $\sum_{m} a_{m,n} f_m = 0$ for all *n* by linearly independence of (g_n) . And by linear independence of (f_m) , $a_{n,m} = 0$ for all *n*, *m* and h = 0.

Lemma 4. Let $H_1 = L^2(X, \mu)$, $H_2 = L^2(Y, \nu)$ and $H = L^2(X \times Y, \mu \times \nu)$. Then the mapping ϕ defined above can be extended uniquely to an isometry Φ of the Hilbert space tensor product $H_1 \otimes H_2$ onto H.

Due to the isometry Φ , we can identify $f \otimes g$ with $f \otimes g$ and we write $(f \otimes g)(x, y) = f(x)f(y)$.

Theorem 11. Let G = M(2). Then $\mathcal{S}(G)$ is dense in $L^2(G)$.

Let $\mathbf{B}_2 = B_2(L^2(\mathbb{T}))$ be the Hilbert space of all Hilbert-Schmidt operators on $L^2(\mathbb{T})$, and put $H_a = \mathbf{B}_2$. Define $H = \int_0^\infty \bigoplus H_a a da$ and let *L* be an element in *H*. Then *L* is a function on $\mathbb{R}_+ = (0, \infty)$ with values in \mathbf{B}_2 . Since L(a) (value of *L* at *a*) is a Hilbert-Schmidt operator on $L^2(\mathbb{T})$, by Lemma 3 it is an integral operator with kernel $k_a \in L^2(\mathbb{T} \times \mathbb{T})$. We have

$$|L||^{2} = \int_{0}^{\infty} ||L(a)||_{2}^{2} a da$$
$$= \int_{0}^{\infty} ||k_{a}||_{2}^{2} a da$$
$$= \int_{0}^{\infty} \int_{\mathbb{T}} \int_{\mathbb{T}} |k_{a}(s, r)|^{2} ds drada, \qquad (96)$$

and $\Phi: L \mapsto k_a(s, r)$ is an isometry of H onto $L^2(\mathbb{R}_+ \times \mathbb{T} \times \mathbb{T})$ (again, by Lemma 3). We identify H with $L(\mathbb{R}_+ \times \mathbb{T} \times \mathbb{T})$ by the map Φ .

Let $\phi : \mathbb{R}_+ \times \mathbb{T} \to \mathbb{R}^2$ be defined by

$$(a,r)\mapsto ra,\tag{97}$$

for $a \in \mathbb{R}_+$ and $r \in \mathbb{T}$. Then the transformation to polar coordinates, $g \mapsto g \circ \phi$, is an isometry of $L^2(\mathbb{R}^2)$ onto $L^2(\mathbb{R}_+,\mathbb{T})$. We identify $L^2(\mathbb{R}^2)$ with $L^2(\mathbb{R}_+ \times \mathbb{T})$.

Theorem 12 (Plancherel theorem). Let $\mathbf{B}_2 = B_2(L^2(\mathbb{T}))$ be the Hilbert space of all Hilbert-Schmidt operators on $L^2(\mathbb{T})$. Put $H_a = \mathbf{B}_2$ for all a > 0 and $H = \int_0^\infty \bigoplus H_a a da$. Then the Fourier transform $\mathscr{F} : f \mapsto \widehat{f}$ can be extended uniquely to an isometry F of $L^2(M(2))$ onto H.

Proof. Parseval's identity (Theorem 9) shows that \mathscr{F} is an isometry of $\mathscr{S}(M(2))$ into H. Since $\mathscr{S}(M(2))$ is dense in $L^2(M(2))$ (Theorem 11), \mathscr{F} can be extended uniquely to an isometry F of $L^2(M(2))$ into H. Now we need to show that F is surjective.

Since *F* is an isometry, the image Im *F* is closed in *H*. To prove the surjectivity of *F*, it is suffices to show that Im \mathscr{F} is dense in *H*. Moreover, since Im $\mathscr{F} \subset \text{Im } F$, it is sufficient to show that for any $k \in H = L^2(\mathbb{R}^2 \times \mathbb{T})$ and $\epsilon > 0$, there exists an element *f* in $\mathscr{S}(M(2))$ such that

$$\left\|k - k_f\right\|_2 < \epsilon. \tag{98}$$

By Lemma 4, we can identify $L^2(\mathbb{R}^2 \times \mathbb{T}) = L^2(\mathbb{R}^2) \otimes L^2(\mathbb{T})$ and we can assume that the element k in (98) is of the form $k = g \otimes h$ for $g \in L^2(\mathbb{R}^2)$ and $h \in L^2(\mathbb{T})$. Moreover since the space of trigonometric polynomials is dense $L^2(\mathbb{T})$, we cal assume without loss of generality that $h = \chi_n$ for some $n \in \mathbb{Z}$. Let $u(ra) = \chi_n(r)g(ra)$ for $r \in \mathbb{T}$ and a > 0, where $\chi_n(r(\alpha)) = e^{in\alpha}$. Then $u \in L^2(\mathbb{R}^2)$. We shall use the fact that $\mathscr{S}(\mathbb{R}^2)$ is dense in $L^2(\mathbb{R}^2)$ to get an element $v \in \mathscr{S}(\mathbb{R}^2)$ such that

$$\left\| u - v \right\|_2 < \epsilon. \tag{99}$$

Let $\mathscr{F}^* v = w$ be the inverse Fourier transform of v on \mathbb{R}^2 . Then $w \in \mathscr{S}(\mathbb{R}^2)$ is a rapidly decreasing function. Hence $f = w \otimes \chi_{-n}$ is a rapidly decreasing function on M(2), i.e. $f \in \mathscr{S}(M(2))$. This f satisfies (98). Since

$$k_a^{\dagger}(s,r) = (\mathscr{F}w)(ra)\chi_{-n}(rs^{-1}) = v(ra)\chi_{-n}(r)\chi_n(s), \qquad (100)$$

we have

$$\begin{aligned} \left\| k - k_f \right\|_2 &= \left\| g \otimes \chi_n - k_f \right\|_2 \\ &= \left\| (\chi_{-n} u) \otimes \chi_n - (\chi_{-n} v) \otimes \chi_n \right\|_2 \\ &= \left\| \chi_{-n} (u - v) \right\|_2 \|\chi_n\|_2 \\ &= \left\| u - v \right\| < \epsilon. \end{aligned}$$
(101)

We can use the Plancherel theorem to decompose the regular representation into irreducible representations and prove an analogue of the Peter-Weyl theorem for M(2).

Proposition 18. Let π be a unitary representation of a topological group G on a separable Hilbert space H. Let $\mathbf{B}_2 = B_2(H)$ be the Hilbert space of all Hilbert-Schmidt operators on H and define a unitary representation of τ of G on \mathbf{B}_2 by setting

$$\tau(g)(A) = \pi(g)A \quad \text{for } A \in \mathbf{B}_2 \text{ and } g \in G. \tag{102}$$

Then τ can be decomposed as the direct sum of countable copies of π . More precisely, let (ϕ_n) be an orthonormal basis of H, P_n be the projection on $\mathbb{C}\phi_n$ and

$$\mathbf{B}_2^n = \{A \in \mathbf{B}_2 \mid AP_n = A\}. \tag{103}$$

Then we have

$$\mathbf{B}_2 = \bigoplus_{n=0}^{\infty} \mathbf{B}_2^n \quad and \quad \tau \big|_{\mathbf{B}_2^n} \cong \pi \tag{104}$$

for all $n \in \mathbb{N}$.

Finally, we have:

Theorem 13. Let *L* be the left regular representation of G = M(2). Then *L* is decomposed as follows

$$L \cong \int_0^\infty \bigoplus \tau_a a da, \tag{105}$$

where τ_a is the direct sum of countable copies of π_a :

$$\tau_a \cong \bigoplus_{n \in \mathbb{Z}} \pi_a \quad \text{for all } a > 0. \tag{106}$$

4 Application to the quantum free particle

We end with a short and relatively informal discussion on the application of the representation theory of M(2) to the problem of a free particle in quantum mechanics.

At the beginning we saw a matrix representation of M(2)

$$M(2) = \left\{ \begin{bmatrix} e^{i\alpha} & z \\ 0 & 1 \end{bmatrix} \middle| \text{ for any } \alpha \in \mathbb{R} \text{ and } z \in \mathbb{C} \right\}.$$
(107)

From here, we can see that the Lie algebra of M(2) is the real vector space spanned by

$$L = \begin{bmatrix} i & 0 \\ 0 & 0 \end{bmatrix}, \quad P_1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 0 & i \\ 0 & 0 \end{bmatrix}, \quad (108)$$

with Lie bracket relations

$$[L, P_1] = P_2, \quad [L, P_2] = -P_1, \quad [P_1, P_2] = 0.$$
 (109)

The so called *Schrödinger representation* π_S provides a unitary Lie algebra representation on the space $L^2(\mathbb{R}^2)$. This is given by the operators

$$\pi_{S}(P_{1}) = -\frac{\partial}{\partial x_{1}}, \quad \pi_{S}(P_{2}) = -\frac{\partial}{\partial x_{2}},$$
 (110)

and

$$\pi_{S}(L) = -\left(x_{1}\frac{\partial}{\partial x_{2}} - x_{2}\frac{\partial}{\partial x_{1}}\right). \tag{III}$$

Hamiltonian operator for a free particle in two dimensions is

$$\widehat{H} = -\frac{1}{2m} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right)$$
(II2)

and solutions to the Schrödinger equation can be found as solutions to the eigenvalue equation

$$\widehat{H}\psi(x_1,x_2) = -\frac{1}{2m} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right) \psi(x_1,x_2) = E\psi(x_1,x_2). \tag{II3}$$

The operators $\pi_S(L)$, $\pi_S(P_1)$ and $\pi_S(P_2)$ commute with \widehat{H} and provide a representation of the Lie algebra of M(2) on the eigenspace of \widehat{H} with eigenvalue E. These eigenspaces are infinite dimensional and are characterized by the non-negative eigenvalue E which has the physical interpretation of energy.

An element $g(r(\alpha), w)$ of M(2) acts on the space of solutions $\psi(x) = \psi(x_1, x_2)$ by

$$g(r(\alpha), w) \cdot \psi(x) = \psi(r(-\alpha)(x-w)), \tag{II4}$$

which is very similar to the left translation of the function ψ . In fact, this representation is the same as the exponentiated version of the Schrödinger representation π_S . For a translation $t(w) \in M(2)$,

$$t(w) \cdot \psi(x) = e^{w_1 \pi_s(P_1) + w_2 \pi_s(P_2)} \psi(x) = \psi(x - w), \tag{115}$$

and for a rotation $r(\alpha) \in M(2)$,

$$r(\alpha) \cdot \psi(x) = e^{\pi_{S}(L)\alpha} \psi(x) = \psi(r(-\alpha)x). \tag{II6}$$

By passing over to the "momentum space", these representations can be shown to be equivalent to the principal series of representations described in Section 2.

References

- 1. Mitsuo Sugiura. *Unitary Representations and Harmonic Analysis: An Introduction* (1990). Second Edition. Kodansha Ltd Tokyo.
- 2. Peter Woit. Quantum Theory, Groups and Representations (2017). Springer.