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1 Isometries ofRn

Definition 1 (isometry). An isometry of Rn is a function A : Rn → Rn that pre-
serves distances between points, i.e., for x, y ∈Rn an isometry satisfies ‖A(x)−A(y)‖=
‖x − y‖ where

‖x‖=

√

√

√

√

n
∑

j=1

x2
j . (1)

We denote the collection of isometries by

I (n) =
�

A :Rn→Rn �
� ‖A(x)−A(y)‖= ‖x − y‖ for every x, y ∈Rn	.

An isometry is said to fix the origin if it satisfies A(0) = 0. It can be shown that
isometries that keep the origin fixed preserve the dot product onRn .

Proposition 1. A function A :Rn→Rn is an isometry satisfying A(0) = 0 if and only
if A preserves dot products: 〈A(x),A(y)〉= 〈x, y〉 for all x, y ∈Rn .

Proof. Let A(0) = 0. Since A fixes the origin, we have ‖x‖= ‖A(x)−A(0)‖= ‖A(x)‖.
Since ‖x‖2 = 〈x, x〉we get

〈A(x)−A(y),A(x)−A(y)〉= 〈x − y, x − y〉
=⇒〈A(x),A(x)〉− 2〈A(x),A(y)〉+ 〈A(y),A(y)〉= 〈x, x〉− 2〈x, y〉+ 〈y, y〉
=⇒〈A(x),A(y)〉= 〈x, y〉

Conversely, assume that 〈A(x),A(y)〉= 〈x, y〉. We then have

‖A(x)−A(y)‖2 = 〈A(x)−A(y),A(x)−A(y)〉
= 〈A(x),A(x)〉− 2〈A(x),A(y)〉+ 〈A(y),A(y)〉
= 〈x, x〉− 2〈x, y〉+ 〈y, y〉
= 〈x − y, x − y〉= ‖x − y‖2. (2)

Hence, A is an isometry. Finally, setting x = y = 0 yields ‖A(0)‖= 0, and therefore
A(0) = 0.
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Moreover, we can also show the following

Proposition 2. A function A :Rn→Rn is an isometry satisfying A(0) = 0 if and only
if A is linear and orthogonal AAT = 1.

Proof. It suffices to show that the map A is linear as orthogonality follows because A
preserves inner products:

〈x, y〉= 〈A(x),A(y)〉= 〈AT A(x), y〉= 〈x,AAT (y)〉 (3)

for all x, y ∈Rn , and therefore AT A=AAT = 1. Let {e j } j=1,...,n be the standard or-
thonormal basis forRn such that 〈e j , ek〉= δ j k . Then {A(e j )} is also an orthonormal
basis for Rn with 〈A(e j ),A(ek )〉= δ j k . We shall first show that A(c x) = cA(x). Let
x ∈Rn and c ∈R, then A(c x) can be expanded in the orthogonal basis {A(e j )}

A(c x) =
n
∑

j=1

〈A(c x),A(e j )〉A(e j ) =
n
∑

j=1

〈c x, e j 〉A(e j )

= c
n
∑

j=1

〈x, e j 〉A(e j ) = c
n
∑

j=1

〈A(x),A(e j )〉A(e j )

= cA(x). (4)

Similarly, for x, y ∈Rn we have

A(x + y) =
n
∑

j=1

〈A(x + y),A(e j )〉A(e j ) =
n
∑

j=1

〈x, e j 〉A(e j )+
n
∑

j=1

〈y, e j 〉A(e j )

=
n
∑

j=1

〈A(x),A(e j )〉A(e j )+
n
∑

j=1

〈A(y),A(e j )〉A(e j )

=A(x)+A(y). (5)

For the converse, we only note that, by definition, an orthogonal linear map preserves
inner products and therefore by Proposition 1 it is an isometry which fixes the origin.

The following result shows that any isometry ofRn can be written as a composition
of a translation and an orthogonal map.

Theorem 1. Every isometry of Rn can be written as T ◦R, where T is a translation
and R is an orthogonal map.

Proof. Let A : Rn → Rn be an isometry. For x ∈ Rn define a translation T (x) :=
x + A(0) and an orthogonal map R(x) := A(x)− A(0) so that we get T ◦ R(x) =
T (A(x)−A(0)) =A(x). It follows that R as defined above is orthogonal because it is
an isometry which fixes the origin, A(0) = 0.

Conversely, if Tw is a translation by a vector w and R is an orthogonal map so that
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A= Tw ◦R, then for every x, y ∈Rwe have

A(x)−A(y) = (R(x)+w)− (R(y)+w) = R(x)−R(y) (6)

and therefore
‖A(x)−A(y)‖= ‖R(x)−R(y)‖= ‖x − y‖. (7)

Hence, Tw ◦R is an isometry.

With these results, we can show that isometries ofRn are invertible and that the inverse
of an isometry is also an isometry.

Proposition 3. Isometries ofRn are invertible and the inverse of an isometry is also an
isometry.

Proof. Let A∈ I (n) be an isometry. By Theorem 1, A= T ◦R where T (x) = x+A(0)
and R is an orthogonal map. As R is orthogonal, it is invertible with R−1 = RT and
we define the inverse of A as

A−1(x) = R−1(x −A(0)). (8)

To show that A−1 is an isometry, we note that







A−1(x)−A−1(y)







=







R−1(x −A(0))−R−1(y −A(0))







, (9)

for all x, y ∈R2, and since R−1 = RT is an orthogonal map and therefore an isometry,
we have







R−1(x −A(0))−R−1(y −A(0))







= ‖(x −A(0))− (y −A(0))‖= ‖x − y‖.

Hence, if A= Tw ◦R then A−1 = T−R−1w ◦R−1.

Hence, with the operation of function composition, the collection I (n) becomes a
group. For any two isometriesA,B ∈ I (n)we canwriteA= Tw1

◦R1 and B = Tw2
◦R2

where R j ∈ O(n) and Tw j
are translations. We have the group composition for

any x ∈R2

A◦B(x) = R1R2(x)+w1+R1(w2) = Tw1+R1w2
◦R1R2. (10)

And the inverse A−1 = (Tw ◦R)−1 = R−1 ◦T−w = T−R−1w ◦R−1, by Proposition 3.

Before moving ahead, we quickly note the following result.

Proposition 4. The groupsRn and O(n) are subgroups of I (n).
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1.1 Semidirect products

Definition 2 (semidirect product of groups). Given a group K , a group N and an
action Φ of K on N by automorphisms

Φk : N →N n 7→ Φk (n), (11)

the semidirect product N oK is the set of pairs (n, k) ∈N ×K with group composition
law

(n1, k1)(n2, k2) = (n1Φk1
(n2), k1k2). (12)

Proposition 5. Semidirect product of groups as defined above is indeed a group.

Proof. Let eN ∈N and eK ∈K be the identities inN andK respectively. Then (eN , eK )
is the identity for N oK

(eN , eK )(n, k) = (eNΦeK
(n), eK k) = (n, k) (13)

and
(n, k)(eN , eK ) = (nΦk (eN ), keK ) = (n, k). (14)

Given the identity, we can compute the inverse with respect to the group composition
law by requiring (n, k)(n, k)−1 = (eN , eK ). We can verify that the inverse is given by
(n, k)−1 = (Φk−1(n−1), k−1):

(n, k)−1(n, k) = (Φk−1(n−1), k−1)(n, k)
= (Φk−1(n−1)Φk (n), k−1k)
= (eN , eK ). (15)

Finally, we verify that the group multiplication is associative. For n1, n2, n3 ∈N and
k1, k2, k3 ∈K

[(n1, k1)(n2, k2)](n3, k3) = (n1Φk1
(n2), k1k2)(n3, k3)

= (n1Φk1
(n2)Φk1k2

(n3), k1k2k3)

= (n1Φk1
(n2Φk2

(n3)), k1k2k3)

= (n1, k1)(n2Φk2
(n3), k2k3)

= (n1, k1)[(n2, k2)(n3, k3)]. (16)

Hence, N oK is indeed a group.

Elements of N oK of the kind (n, eK ) form a subgroup of N oK isomorphic to N .
Similarly, elements of the kind (eN , k) form a subgroup isomorphic to K . In slight
abuse of notation, when we shall say that N and K are subgroups of N oK when we
are actually referring to isomorphic copies of N and K inside N oK .

Proposition 6. Let N o K be a semidirect product of groups. Then N is a normal
subgroup of N oK .
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Proof. Wewant to show that gN g−1 =N for all g = (n, k) ∈N oK . Let (m, eK ) ∈
N oK for m ∈N . We have

(n, k)(m, eK )(n, k)−1 = (nΦk (m), k)(Φk−1(n−1), k−1)
= (nΦk (m)Φk (Φk−1(n−1)), kk−1)
= (nΦk (m)n

−1, eK ) ∈N . (17)

Thus, given any m ∈N , wehave for any (n, k) ∈NoK , n−1mn ∈N andΦk−1(n−1mn) ∈
N so that (n, k)(Φk−1(n−1mn), eK )(n, k)−1 = (m, eK ) and therefore (m, eK ) ∈ gN g−1

where g = (n, k) and therefore N ⊂ gN g−1. Conversely, any element of gN g−1 is
of the form in (17) and hence N = gN g−1 for all g ∈N oK .

The factor K in N oK need not be normal. We also note that the direct product is a
special case of semidirect product when Φk is the trivial automorphism for all k ∈K .

We have an actionΦ ofO(n) onRn by automorphisms: ΦR :Rn→Rn given naturally
by x 7→ Rx. We notice that the group composition law for a semidirect product
Rn o O(n) is identical to the group composition law (10) for I (n). Explicitly, for
(w1, R1), (w2, R2) ∈Rn oO(n)

(w1, R1)(w2, R2) = (w1+ΦR1
(w2), R1R2) = (w1+R1w2, R1R2). (18)

Moreover, sinceTheorem 1 implies that every isometry can bewritten as a composition
of a translation and an orthogonal transformation, we have the following characteri-
zation of the isometry group.

Theorem2. The isometry group I (n) is the semidirect product ofRn andO(n), i.e., I (n)∼=
Rn oO(n).

Corollary 1. Rn is a normal subgroup of of the isometriy group I (n).

Let p : N o K → K be the canonical surjection map, i.e., (n, k) 7→ k. Then p is a
group homomorphism. We verify this by taking any (n1, k1), (n2, k2) ∈ N oK and
noting that

p((n1, k1)(n2, k2)) = p(n1Φk1
(n2), k1k2) = k1k2

= p((n1, k1))p((n2, k2)). (19)

Moreover, the kernel of p is N . This can be verified by noting that any (n, eK ) is
mapped to eK under p, therefore N ⊂ ker p. Conversely, (n, k) ∈ ker p implies
k = eK and (n, k) = (n, eK ) ∈ N . Now, the first isomorphism theorem gives us
K ∼= (N oK)/N .

Proposition 7. Let G = N o K be a semidirect product of groups N and G. Then
G/N ∼=K .

Applying the above result to the isometry group gives

Corollary 2. I (n)/Rn ∼=O(n).
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1.2 Euclidean motion group

Elements of I (n) of the formTw◦RwhereR ∈ SO(n) are called orientation preserving
isometries ofRn . Orientation preserving isometries form a subgroup of I (n).

Definition 3 (Euclideanmotion group). TheEuclideanmotion group in n-dimensions,
denoted M (n), is the collection of all orientation preserving isometries ofRn .

Just like in case of I (n), we have: M (n) ∼= Rn o SO(n). Moreover, Rn is a normal
subgroup of M (n) and if p : M (n)→ SO(n) is the canonical surjection map, then p
is a homomorphism with ker(p) =Rn and SO(n)∼=M (n)/Rn .

In the rest of this report we shall focus on the Euclidean motion group in two dimen-
sions, i.e., n = 2.

In particular, asR2 ∼=C and SO(2)∼=U(1)∼=T, where T is the 1-dimensional torus,
we can make the identification M (2) = CoT. With this identification M (2) is the
group of orientation preserving isometries ofC. We shall denote elements of M (2)
by g (z,α) = t (z) ◦ r (α), where, for w ∈ C, t (z)(w) = w + z is a translation and
r (α)(w) = we iα is the action of U(1) onC.

The Euclidean inner product onC is given by 〈z, w〉=Re(zw).

M (2) can be embedded inGL(2,C) as the subgroup with matrices of the form

M (2) =
¨

�

e iα z
0 1

�

�

�

�

�

�

for any α ∈R and z ∈C
«

. (20)

Hence, M (2) is a linear Lie group. In fact, I (2) is a 3-dimensional Lie group with two
connected components. M (2) is the connected component of I (2) containing the
identity.

For future reference, we note the following relations.

1. r (α)r (β) = r (α+β); r (α)−1 = r (−α)
2. t (z)t (w) = t (z +w); t (z)−1 = t (−z)
3. g (z,α) = t (z)r (α)
4. g (z,α)−1 = g (−r (−α)z,−α)
5. g (z,α)g (w,β) = g (z + r (α)w, r (α+β))

2 Irreducible representations of M (2)

The compact group T∼=R/2πZ has the normalized Haar measure d r = dα/2π. We
start by looking at a family of unitary representations of M (2).

Theorem 3. Let a ∈ R2. There exists a unitary representation πa of M (2) on L2(T)
defined by

(πa(g )F )(x) = e i〈z,xa〉F (r (α)−1x), (21)

where g = t (z)r (α) and F ∈ L2(T).
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Proof. We verify that πa is unitary. For g = t (z)r (α) ∈M (2) and F , F ′ ∈ L2(T)

〈πa(g )F ,πa(g )F
′〉=
∫

T
F (r−1x)F ′(r−1 s)d x, (22)

and since the measure on T is left invariant

〈πa(g )F ,πa(g )F
′〉=
∫

T
F (x)F ′(x)d x = 〈F , F ′〉. (23)

We also verify that πa as defined above is a group homomorphism of M (2) into
GL(L2(T). Let g1 = t (z1)r (α1) and g1 = t (z2)r (α2), then for F ∈ L2(T)

(πa(g1)πa(g2)F )(x) =πa(g1)e
i〈z2,r (α2)

−1 xa〉F (r (α2)
−1x)

= e i〈z1+r (α2)z2,xa〉F (r (α1+α2)
−1x)

= (πa(g1 g2)F )(x).

Finally, we need to show that the mapping g 7→πa(g ) from M (2) to GL(L2(T)), with
strong operator topology on GL(L2(T)), is continuous. It is sufficient to prove that
the map is continuous at identity, i.e., given ε > 0 there exists a neighbourhood U of
e in M (2) such that

‖πa(g )F − F ‖< ε for any g ∈U . (24)

Since the case of F = 0 is trivial, assume F 6= 0. We can assume ε/3< ‖F ‖, and since
C (T) is dense in L2(T), there existsφ ∈C (T) satisfying

‖F −φ‖< ε/3. (25)

As ‖F ‖> ε/3,φ 6= 0. Sinceφ is a continuous function on the compact group T, it
is bounded and uniformly continuous and therefore translations ofφ are continu-
ous, i.e., there exists a neighbourhood V of identity in T such that the left regular
representation satisfies

‖Lrφ−φ‖∞ < ε/6 for any r ∈V . (26)

Moreover, since |〈w, t a〉| ≤ |w||a| for an t ∈T, there exists a neighbourhoodW of 0
inR2 such that

|e i〈w,t a〉− 1|< ε

6‖φ‖∞
(27)

for every w ∈W and t ∈T. Let U = t (W )×V . Then U is a neighbourhood of e in

7



M (2). If g = t (z)r (α) ∈U , then we have

‖πa(g )φ−φ‖= sup
t∈T

�

�

�e i〈z,t a〉φ(r−1 t )−φ(t )
�

�

�

≤







e i〈z,t a〉(φ(r−1 t )−φ(t )









∞
+







(e i〈z,t a〉− 1)φ(t )









∞

≤ ‖Lrφ−φ‖∞+







e i〈z,t a〉− 1









∞
‖φ‖∞

< ε/6+ ε/6= ε/3. (28)

Finally, using the above inequality, (25) and the relations ‖πa(g ) f ‖ = ‖ f ‖, ‖φ‖ ≤
‖φ‖∞ we have

‖πa(g )F − F ‖ ≤ ‖πa(g )F −πa(g )φ‖+ ‖πa(g )φ−φ‖+ ‖φ− F ‖
< ‖πa(g )(F −φ)‖+ ε/3+ ε/3
< ε/3+ ε/3+ ε/3< ε. (29)

The next result shows that the right regular representation of T intertwines πa with
πra .

Theorem 4. Let Rr (r ∈T) be the right regular representation of T. Then we have

Rr ◦πa(g ) =πra(g ) ◦Rr (30)

Proof. Let r0 ∈T, g = t (z)r ∈M (2) and F ∈ L2(T), we have

(Rr0
πa(g )F )(t ) =πa(g )F (t r0) = e i〈z,at r0〉F (r−1 t r0)

=πa(g )F (t r0) = (πa(g )Rr0
)F (t ) (31)

Since Rr is unitary and always non-trivial, the above result shows that if |a| = |b |,
then πa and πb are unitarily equivalent, i.e., πa

∼= πb , and it is sufficient to study
representations πa for which a ≥ 0.

An explicit computation of the representation in Theorem 3 gives

Proposition 8. For g = t (ρe iφ)r (α) the unitary operatorπa(g ) (a ≥ 0) is represented
by

(πa(g )F )(θ) = e iaρcos(φ−θ)F (θ−α). (32)

Proof. As 〈z,a〉=Re za, we have 〈z, r (θ)a〉. With the given g , we have z = ρe iθ and

〈z, r (θ)a〉=Re(aρe i(φ−θ)) = aρcos(φ−θ). (33)
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By Theorem 3 we get

(πa(g )F )(θ) = e i〈z,r (θ)a〉F (θ−α)

= e iaρcos(φ−θ)F (θ−α). (34)

Proposition 9. Let F ∈ L2(T). Then πa(r )F = F for every r ∈T if and only if F is a
constant function.

Proof. We notice thatπa(r ) = Lr , the left regular representation ofT for every r ∈T.
Write F (θ) =
∑

n∈Z cnχn(θ) and

πa(r (α))
�

∑

n∈Z
cnχn

�

(θ) =
∑

n∈Z
cn e−i nαχn(θ). (35)

Hence, F ∈ L2(T) satisfiesπa(g )F = F for every θ ∈T if and only if cn = e−i nαcn for
every n ∈Z. This means cn = 0 for n 6= 0 and F = c0χ0 = c0, a constant.

We now give a converse to Theorem 4.

Lemma 1. Let φa(g ) = 〈πa(g )1,1〉, where 1 denotes the constant function that is 1
everywhere on T. Then we have φa(g ) = J0(aρ) for g = t (ρe iφ)r (α), where J0 is the
Bessel function of order 0.

Proof. By Proposition 8 we have

φa(t (ρe iφ)r (α)) = 〈πa(t (ρe iφ)r (α)1,1〉

=
1

2π

∫ 2π

0
e iaρcos(φ−θ)dθ

=
1

2π

∫ 2π

0
e iaρcosθdθ

= J0(aρ), (36)

where the last equality follows from the definition of the Bessel function.

Theorem 5. Let a, b ∈R2. Then πa is equivalent to πb if and only if |a|= |b |.

Proof. It is sufficient to prove that if πa
∼=πb for a, b ≥ 0, then a = b .

If πa
∼= πb , then there exists a unitary operator T on L2(T) such that Tπa(g ) =

πb (g )T for all g ∈ M (2). If we denote by 1 the constant function with value 1 on
T, then (πb (r )T )(1) = (Tπa(r ))(1) = T (1) for every r ∈ T. Hence, T (1) = c , a
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constant, by Proposition 9. Since T is unitary, |c |= 1. We have

φa(g ) = 〈πa(g )1,1〉= 〈Tπ( g )1,T 1, 〉

= 〈πb (g )T 1,T 1〉= |c |2〈πb (g )1,1〉
=φb (g ) for any g ∈M (2). (37)

By Lemma 1, we get

J0(aρ) = J0(bρ) for every ρ ∈R . (38)

We know that
J0(x) =

1
2π

∫ 2π

0
e i x cosθdθ, (39)

differentiating twice gives

J ′′0 (0) =
−1
2π

∫ 2π

0
cos2θdθ < 0. (40)

If we put fa(x) = J0(ax), then f ′′a (0) = a2J ′′0 (0). As J0(aρ) = J0(bρ)we have a2J ′′0 (0) =
b 2J ′′0 (0) and hence a2 = b 2.

We have shown that if πa
∼=πb then |a|= |b |.

This next result shows that the representations πa are irreducible for |a|> 0.

Lemma 2. The limit

lim
x→0
















e iax f (θ)− 1
x

− ia f (θ)
















= 0 (41)

holds.

Proof.















e iax f (θ)− 1
x

− ia f (θ)
















∞
=

1
|x|








e iax f (θ)− (1+ iax f (θ))









∞
(42)

By Taylor expansion of e x

e iax f (θ) = 1+ iax f (θ)+
(iax f (θ))2

2!
+ o(x3), (43)

we get















e iax f (θ)− 1
x

− ia f (θ)
















∞
≤ 1
|x|
















(iax f (θ))2

2
















∞≤ a2

2
|x|. (44)

Hence, the limit holds.

Theorem 6. If |a|> 0, the unitary representation (πa , L2(T)) is irreducible.
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Proof. By Theorem 4, we can assume a > 0 without loss of generality. To show
irreducibility, it is sufficient to prove that if a projection operator P on L2(T) satisfies

Pπa(g ) =πa(g )P for every g ∈M (2), (45)

then P = 0 or P = 1, i.e., L2(T) has no non-trivial invariant subspaces.

For n ∈Z, put χn(θ) = e i nθ and define fn := Pχn . For g = t (0)r (α) ∈M (2)we have
(πa(r (α)) fn)(θ) = fn(θ−α) and therefore

fn(θ−α) = (πa(r (α))Pχn)(θ) = (Pπa(r (α)))(θ)

= Pχn(θ−α) = P (e i n(θ−α)) = e−i nα fn(θ). (46)

With θ = α, we conclude fn(α) = cn e i nα, where cn = fn(0) is a constant, for every
n ∈Z. For x ∈Rwe have (by Proposition 8)

P (e iax cosθe i nθ) = (Pπa(t (x)))(e
i nθ) = (πa(t (x))Pχn)(θ)

= cn(πa(t (x))χn)(θ) = cn e iax cosθe i nθ (47)

and therefore
P
�

e iax cosθ− 1
x

e i nθ
�

= cn
e iax cosθ− 1

x
e i nθ. (48)

By Lemma 2 we get P (e i nθ cosθ) = cn e i nθ cosθ. Similarly, we have P (e iax sinθe i nθ) =
cn e iax cosθe i nθ and by Lemma 2 we get P (e i nθ sinθ) = cn e i nθ sinθ. Together these
prove

Pχn+1 = P (e iθe i nθ) = P (e i nθ cosθ+ i e i nθ sinθ)

= cn e i nθ cosθ+ i cn e i nθ sinθ= cnχn+1 for every n ∈Z . (49)

Hence, cn+1 = cn and cn = c0 for every n ∈ Z. Since χn is an orthonormal basis for
T, we get P = c01, and as P is a projection operator P 2 = P =⇒ c2

0 = c0, therefore
c0 = 0 or c0 = 1. We have proved that P = 0 or P = 1.

The family of representations P = {πa |a > 0} is called the principal series of irreducible
representations of M (2).

All representations in the principal series are infinite dimensional. We will now look
at some one-dimensional representations of M (2). Let p : M (2)→T be the canonical
projection of M (2) =CoT onto T. Any irreducible representation χ of T defines a
unitary representation χ ◦ p of M (2). The unitary dual of T is

bT= {χn : r (α) 7→ e i nα|n ∈Z}. (50)

All irreducible representations ofT are one-dimensional, therefore the representations
χn ◦ p of M (2) are also irreducible.

Remarkably, these one-dimensional representations are the only irreducible unitary
representations of M (2) other than the principal series.
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Theorem 7. Any irreducible unitary representation π of the Euclidean motion group
M (2) is equivalent to one of the elements in the set

ÕM (2) = {πa |a > 0} ∪ {χn ◦ p|n ∈Z}. (51)

No two elements ofÕM (2) are equivalent to each other.

3 Fourier transforms
Proposition 10. Let g = t (z)r (α) = t (x + i y)r (α). Then d g = d zd r = d xd yd r
is a left invariant Haar measure on M (2). It is also right invariant and M (2) is a
unimodular group.

Proof. We have t (z1)r1 t (z2)r2 = t (z1+ r1z2)r1 r2 and the Lebesgue measure d z on
C is invariant under rigid motion z1 7→ z1+ r1z2. We have already seen that d r is the
Haar measure on T, therefore we have d (g1 g2) = d g2. Similarly, d (g2, g1) = d g2 and
M (2) is a unimodular group.

The measure on M (2) given by d g = d zdα/(2π)2 = d m(z)d r is called the normal-
ized Haar measure on G.

Definition 4 (Fourier transform). The Fourier transform bf of a function f ∈ L1(M (2))
is a function on R∗+ = (0,∞) with values in B(L2(T)), the Banach space of bounded
linear operators on L2(T), defined by

bf (a) =
∫

M (2)
f (g )πa(g

−1)d g for a > 0, (52)

where πa is a principal series unitary representation.

Proposition 11. If f and h are integrable function on M (2), then we have

1.









bf (a)







≤ ‖ f ‖1, for any a > 0

2. Õf ∗ h = bh bf , and

3. Ô( f ∗)(a) = ( bf (a))∗

Proof. 1. Let u ∈ L2(T). We have










bf (a)u







=
















∫

M (2)
f (g )πa(g

−1)ud g
















≤
∫

M (2)
| f (g )|







πa(g
−1)u







d g , (53)

and since πa(g
−1) is unitary, and d g is the normalized Haar measure









bf (a)u







≤ ‖ f ‖1‖u‖. (54)
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2. We use Fubini’s theorem and right invariance of d g to simplifyÕf ∗ h(a)

Õf ∗ h(a) =
∫

M (2)
f ∗ h(g )πa(g

−1)d g

=
∫

M (2)

�

∫

M (2)
f (g s−1)h(s)d s

�

πa(g
−1)d g

=
∫

M (2)

�

∫

M (2)
f (g s−1)πa(g

−1)d g

�

h(s)d s

=
∫

M (2)

�

∫

M (2)
f (g )πa(s

−1 g−1)d g

�

h(s)d s

=
∫

M (2)
h(s)πa(s

−1)d s
∫

M (2)
f (g )πa(g

−1)d g

= bh(a) bf (a) = bh bf (a). (55)

3. Let u, v ∈ L2(H). We have

〈cf ∗(a)u, v〉=
∫

M (2)
〈 f ∗(g )πa(g

−1)u, v〉d g

=
∫

M (2)
〈 f (g−1)πa(g

−1)u, v〉d g

=
∫

M (2)
〈u, f (g−1)πa(g )v〉d g

= 〈u, bf (a)v〉= 〈( bf (a))∗u, v〉 (56)

Hencecf ∗(a) = bf (a)∗.

We define the notion of a rapidly decreasing function analogously to the case ofRn .

Definition 5. A complex valued C∞-function f on M (2) is called rapidly decreasing
if for any N ∈N and m ∈N3 we have

pN ,m( f ) = sup
α∈R,z∈C

�

�

�(1+ |z |2)N (D m f )(z,α)
�

�

�<∞, (57)

where
D m =
�

1
i
∂

∂ x

�m1
�

1
i
∂

∂ y

�m2�1
i
∂

∂ α

�m3

. (58)

The vector space of all rapidly decreasing functions on a groupG is denoted byS (G).

The following result shows that bf (a) is an integral operator on L2(T)with its kernel
given by

ka
f (s , r ) =
∫

R2
f (z, r s−1)e−i〈z,ra〉d m(z). (59)
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Proposition 12. If f is a rapidly decreasing function on M (2) and ka
f is as defined

above, then we have
( bf (a)F )(s) =
∫

T
ka

f (s , r )F (r )d r (60)

for any a > 0 and F ∈ L2(T).

Proof. Let F , F ′ ∈ L2(T) and g ∈M (2)with g = t (z)r and g−1 = t (−r−1z)r−1. We
have

〈 bf (a)F , F ′〉=
∫

M (2)
f (g )〈πa(g

−1)F , F ′〉d g

=
∫

R2

∫

T
f (z, r )〈πa(t (−r−1z)r−1)F , F ′〉d m(z)d r

=
∫

R2

∫

T
f (z, r )
�∫

T
e−i〈r−1 z,sa〉F (r s)F ′(s)d s

�

d m(z)d r

=
∫

T

∫

T

�∫

R2
f (z, r s−1)e−i〈z,ra〉d m(z)

�

F (r )F ′(s)d s d r

=
∫

T

�∫

T
ka

f (s , r )F (r )d r
�

F ′(s)d s .

If we denote the ordinary Fourier transform of z 7→ f (z, r ) by ef (ξ , r ):

ef (ξ , r ) =
∫

R2
f (z, r )e−i〈z,ξ 〉d m(z), (61)

the kernel ka
f is given by

ka
f (s , r ) = ef (ra, r s−1). (62)

3.1 Fourier inversion formula

Definition 6. A bounded linear operator A on a separable Hilbert space H is said to be
of trace class if for any orthonormal basis (φn)n∈N of H , the series

∑

n∈N
〈Aφn ,φn〉 (63)

converges to a finite sum which is independent of the choice of (φn).

The sum in (63) is called the trace of A and is denoted by TrA.

If A is of trace class then the series (63) converges absolutely, because the sum is
invariant under a change of ordering ofφns.

The following result gives a sufficient condition for an operator to be of trace class.

Proposition 13. Let H be a separable Hilbert space. If a bounded linear operator A on
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H satisfies
∑

n,m∈N
|〈Aφn ,φm〉|<∞ (64)

for a fixed orthonormal basis (φn)n∈N, then A is of trace class. Moreover, if U andV
are two bounded operators on H , then UAV , AV U , and V UA are of trace class and
have the same trace.

Proof. Let am,n = 〈Aφm ,φn〉, um,n = 〈Uφm ,φn〉, and vn,m = 〈Vφm ,φn〉. We have

Aφm =
∞
∑

n=0
am,nφn , Uφm =

∞
∑

n=0
um,nφn and Vφm =

∞
∑

n=0
vm,nφn .

Hence
UAVφm =

∞
∑

n,k ,l=0

um,nan,k vk ,lφl , (65)

and with Schwarz inequality in l 2 gives

∞
∑

m=0
|um,nan,k vk ,m | ≤ |an,k |

� ∞
∑

m=0
|um,n |

2

�1/2� ∞
∑

m=0
|uk ,m |

2

�1/2

= |an,k |‖U
∗φn‖‖V

∗φk‖ j ≤ |an,k |‖U
∗‖‖V ∗‖ (66)

and finally we have

∞
∑

m=0
|〈UAVφm ,φm〉| ≤

∞
∑

n,k=0

|an,k |‖U
∗‖‖V ∗‖<∞, (67)

by hypothesis. Hence, the series
∑

m,n,k um,nan,k vk ,m converges absolutely and we
can change the order of terms freely. We use Parseval’s equality to get
∑

m
〈UAVφm ,φn〉=

∑

m
〈Vφm ,A∗U ∗φn〉

=
∑

m,n
〈Vφm ,φn〉〈φn ,A∗U ∗φm〉

=
∑

m,n,k

〈Vφm ,φn〉〈Aφn ,φk〉〈Uφk ,φm〉

=
∑

k

〈AV Uφk ,φk〉=
∑

n
〈V UAφn ,φn〉. (68)

Let (ψn)n∈N be another orthonormal basis of H , then the operator W , defined by
Wφn =ψn is unitary and

∞
∑

m=0
〈UAVψm ,ψm〉=

∞
∑

m=0
〈UAVφm ,φm〉, (69)

Hence, UAV is of trace class, and in particular, putting U =V = 1 shows that A is
of trace class. Similarly, AV U and V UA are also of trace class and (68) shows that
Tr(UAV ) =Tr(AV U ) =Tr(V UA).
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Proposition 14. If k(θ,φ) is a C 2-function on T2, then the Fourier series
∑

m,n∈Z
am,n e i(mθ+nφ) (70)

of k , where

am,n =
1
(2π)2

∫ 2π

0

∫ 2π

0
k(θ,φ)e−i(mθ+nφ)dθdφ, (71)

converges absolutely and uniformly.

Proposition 15. If k(θ,φ) is aC 2-function onT2, then the operator L on L2(T) defined
by

(LF )(θ) =
1

2π

∫ 2π

0
k(θ,φ)F (φ)dφ (72)

is of trace class with trace

Tr L=
1

2π

∫ 2π

0
k(θ,θ)dθ. (73)

Proof. Let χn(θ) = e i nθ, then (χn)n∈Z is an orthonormal basis of L2(T). By the
previous proposition, the Fourier series of k converges and uniformly. We have

〈Lχm ,χn〉=
1
(2π)2

∫ 2π

0

∫ 2π

0
k(θ,φ)e i(mφ−nθ)dφdθ= am,−n , (74)

and it follows that
∑

m,n∈Z
|〈Lχm ,χn〉|<∞ (75)

and by Proposition 13, L is of trace class. As the series k(θ,θ) converges uniformly on
T, we can integrate it term by term and get

1
2π

∫ 2π

0
k(θ,θ)dθ=
∑

m,n∈Z
am,n

∫ 2π

0
e i(m+n)θdθ

=
∑

m,n∈Z
am,nδm+n,0

=
∑

m∈Z
am,−m =
∑

m∈Z
〈Lχm ,χm〉=Tr L. (76)

The above series of propositions culminates in the Fourier inversion formula for
rapidly decreasing functions.

Theorem 8 (inversion formula). Any function f ∈S (M (2))may be recovered from
its Fourier transform bf by the formula

f (g ) =
∫ ∞

0
Tr
�

πa(g ) bf (a)
�

ada. (77)
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In particular, πa(g ) bf (a) and bf (a) are of trace class.

Proof. ByProposition 12 bf (a) can be seen as an integral operatorwith a smooth kernel,
and therefore we can use Proposition 15 to say that bf (a) is of trace class. Let g = t (z)u
for u ∈T; then πa(g ) bf (a) is an integral operator

(πa(g ) bf (a)F )(x) = e i〈z,xa〉( bf (a)F )(u−1 s)

=
∫

T
e i〈z,xa〉ka

f (u
−1x, r )F (r )d r

=
∫

T
e i〈z,xa〉
ef (ra, r x−1u)F (r )d r, (78)

with kernel ma
f (g ; x, r ) = e i〈z,xa〉 ef (ra, r s−1u). By Proposition 15,

Tr
�

πa(g ) bf (a)
�

=
∫

T
ma

f (g ; r, r )d r

=
∫

T
e i〈z,ra〉
ef (ra, u)d r (79)

For fixed r , the function fr : z 7→ f (z, r ) is a rapidly decreasing onR2, and

ef (a, r ) =
∫ 2

R
f (z, r )e−i〈z,a〉d m(z) (80)

is the Fourier transformonR2; hence, we canuse the inversion formula for fr ∈S (R2)
to get

f (g ) = f (z, u) =
∫

R2

ef (ξ , u)e i〈z,ξ 〉d m(ξ )

=
∫ ∞

0

∫

T

ef (ra, u)e i〈z,ra〉adad r

=
∫ ∞

0
Tr
�

πa(g ) bf (a)
�

ada, (81)

where in the second line we transformed to polar coordinates, and used Fubini’s
theorem to get to the last line by integrating over T.

Proposition 16. If f and h belong toS (M (2)), then f ∗ h and f ∗(g ) = f (g−1) also
belong toS (M (2)).

Next, we want to prove the Parseval equality for Fourier transforms.

3.2 Parseval identity

Let H1 and H2 be two separable Hilbert spaces. The set of bounded linear operators
from H1 into H2 is denoted by B(H1, H2). Let (φn)n∈N be an orthonormal basis of
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H1. For any element A of B(H1, H2) put

‖A‖22 =
∑

n∈N
‖Aφn‖

2. (82)

Let (ψn)n∈N be an orthonormal basis of H2. If (φ′n)n∈N is an orthonormal basis of
H1, by Parseval’s equality we have
∑

n∈N
‖Aφm‖

2 =
∑

n∈N

∑

m∈N
|〈Aφn ,ψm〉|

2 =
∑

m∈N
‖A∗ψm‖

2

=
∑

m∈N

∑

n∈N

�

�〈A∗ψm ,φ′n〉
�

�

2 =
∑

n∈N





Aφ′n






2. (83)

Hence, ‖A‖2 is independent of the choice of basis (φn). Moreover, the above calcula-
tion also shows that ‖A‖2 = ‖A∗‖2.

Definition 7. An operator A ∈ B(H1, H2) is called a Hilbert-Schmidt operator if
‖A‖2 <∞. The set of Hilbert-Schmidt operators is denoted by B2(H1, H2).

B2(H1, H2) is a subspace of B(H1, H2) and ‖·‖2 is a norm on B2(H1, H2) called the
Hilbert-Schmidt norm. Moreover, if A,B ∈ B2(H1, H2), then the inner product

〈A,B〉=
∑

n∈N
〈Aφn ,Bφn〉 (84)

is well defined and B2(H1, H2) becomes a Hilbert space. From the above definition
it is easy to see that B∗A is a trace class operator on H1 with TrB∗A= 〈A,B〉. As a
consequence we have the following.

Proposition 17. A∈ B(H1, H2) is a Hilbert-Schmidt operator if and only if A∗A is a
trace class operator on H1.

We can now prove Parseval’s equality for Fourier transforms.

Theorem 9 (Parseval’s equality). If f belongs to S (M (2)), then bf (a) is a Hilbert-
Schmidt operator on L2(T) and it satisfies

∫

M (2)
| f (g )|2d g =
∫ ∞

0










bf (a)









2

2
ada. (85)

Proof. Define h := f ∗ f ∗. By Proposition 16 h ∈S (M (2)) is also a rapidly decreasing
function. By Proposition 15 bh(a) is of trace class and Trbh(a) = Tr

�

cf ∗(a) bf (a)
�

=

Tr
�

bf (a)∗ bf (a)
�

(by Proposition 11). Hence, we have bh(a) =









bf (a)









2

2
and by Proposi-

tion 17, bf (a) is a Hilbert-Schmidt operator. By Theorem 8 we have

h(e) =
∫ ∞

0
Tr
�

bh(a)
�

ada =
∫ ∞

0










bf (a)









2

2
ada, (86)
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and by definition of the convolution product, we have

h(e) = f ∗ f ∗(e) =
∫

M (2)
f (g ) f (g )d g =
∫

M (2)
| f (g )|2d g . (87)

In general, we cannot define the character of the representation πa as the unitary
operator πa(g ) need not be of trace class and the series

∑

n∈Z
〈πa(g )χn ,χn〉 (88)

may not converge. One way out is to look at the above series as a distribution on
G =M (2).

Definition 8 (distribution). LetCc (G) be the space of all complex valuedC∞-functions
on G with compact support. A continuous linear form on Cc (G) is called a distribution
on G.

We define the character χa as the linear form

χa : f 7→
∑

n∈Z

∫

G
f (g )〈πa(g )χn ,χn〉d g =

∑

n∈Z
〈π f

a χn ,χn〉=Trπ f
a (89)

for f ∈Cc (G), where

π f
a =
∫

G
f (g )πa(g )d g . (90)

If we let h(g ) = f (g−1), then π f
a = bh(a) and we write h(r e iφ,α) = h[r,φ,α].

We have the following characterization of distributions.

Theorem 10. For any fixed a > 0, the linear form χa : f 7→ π f
a is a distribution on

M (2). Moreover, χa is equal to J0(a|z |)⊗δ(α), where J0 is the Bessel function of order 0
and δ is the Dirac measure at 0 on T.

Proof. By Propositions 12 and 15 π f
a is of trace class and

Trπ f
a =

1
2π

∫ 2π

0
ka

h (θ,θ)dθ

=
1
(2π)2

∫ ∞

0

∫ 2π

0

∫ 2π

0
h[r,φ, 0]e ia r cos(φ−θ) r d r dφdθ

=
∫

R2
f (−z, 0)J0(a|z |)d m(z)

=
∫

T

∫

R2
f (z,α)J0(a|z |)d m(z)dδ(α). (91)
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Wenowwant to extend the Fourier transform uniquely fromS (M (2)) to an isometry
of L2(M (2)).

3.3 Plancherel theorem

Lemma 3. Let H1 = L2(X ,µ), H2 = L2(Y, ν), and let Φ be the mapping of H =
L2(X ×Y,µ× ν) into the space B2(H2, H1) of Hilbert-Schmidt operators which maps
k ∈H into the integral operator K with the kernel k . Then Φ is an isometry of H onto
B2(H2, H1).

Definition 9. LetX , Y be two sets andC (X ), C (Y ) andC (X ×Y ) be the vector spaces
of all complex valued functions on X , Y and X ×Y respectively. For any two functions
f ∈C (X ) and g ∈C (Y ), define

( f ©∗ g )(x, y) = f (x)g (y) (92)

such that f ©∗ g ∈C (X ×Y ).

Since the mapping ( f , g ) 7→ f ©∗ g is bilinear from C (X )×C (Y ) into C (X ×Y ),
there exists a linear mapφ : C (X )⊗C (Y )→C (X ×Y ) such that

φ( f ⊗ g ) = f ©∗ g , (93)

φ is injective. If we letφ(h) = 0, then we have

h =
∑

m,n
am,n fm ⊗ gn , (94)

where ( fm) and (gn) are linearly independent families in C (X ) and C (Y ) respectively.
Since

∑

m,n
am,n fm(x)gn(x) = 0 for all x ∈X , y ∈ Y (95)

we have
∑

m am,n fm = 0 for all n by linearly independence of (gn). And by linear
independence of ( fm), an,m = 0 for all n, m and h = 0.

Lemma 4. Let H1 = L2(X ,µ), H2 = L2(Y, ν) and H = L2(X ×Y,µ× ν). Then the
mappingφ defined above can be extended uniquely to an isometry Φ of the Hilbert space
tensor product H1⊗H2 onto H .

Due to the isometryΦ, we can identify f ⊗ g with f ©∗ g and we write ( f ⊗ g )(x, y) =
f (x) f (y).

Theorem 11. Let G =M (2). ThenS (G) is dense in L2(G).

Let B2 = B2(L
2(T)) be the Hilbert space of all Hilbert-Schmidt operators on L2(T),

and put Ha = B2. Define H =
∫∞

0 ⊕Haada and let L be an element in H . Then
L is a function on R+ = (0,∞) with values in B2. Since L(a) (value of L at a) is a
Hilbert-Schmidt operator on L2(T), by Lemma 3 it is an integral operator with kernel
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ka ∈ L2(T×T). We have

‖L‖2 =
∫ ∞

0
‖L(a)‖22ada

=
∫ ∞

0
‖ka‖

2
2ada

=
∫ ∞

0

∫

T

∫

T
|ka(s , r )|2d s d rada, (96)

and Φ : L 7→ ka(s , r ) is an isometry of H onto L2(R+×T×T) (again, by Lemma 3).
We identify H with L(R+×T×T) by the map Φ.

Letφ :R+×T→R2 be defined by

(a, r ) 7→ ra, (97)

for a ∈R+ and r ∈T. Then the transformation to polar coordinates, g 7→ g ◦φ, is
an isometry of L2(R2) onto L2(R+,T). We identify L2(R2)with L2(R+×T).

Theorem 12 (Plancherel theorem). Let B2 = B2(L
2(T)) be the Hilbert space of all

Hilbert-Schmidt operators on L2(T). Put Ha = B2 for all a > 0 and H =
∫∞

0 ⊕Haada.
Then the Fourier transformF : f 7→ bf can be extended uniquely to an isometry F of
L2(M (2)) onto H .

Proof. Parseval’s identity (Theorem 9) shows thatF is an isometry ofS (M (2)) into
H . SinceS (M (2)) is dense in L2(M (2)) (Theorem 11),F can be extended uniquely
to an isometry F of L2(M (2)) into H . Now we need to show that F is surjective.

Since F is an isometry, the image Im F is closed in H . To prove the surjectivity of
F , it is suffices to show that ImF is dense in H . Moreover, since ImF ⊂ Im F , it is
sufficient to show that for any k ∈H = L2(R2×T) and ε > 0, there exists an element
f inS (M (2)) such that








k − k f










2
< ε. (98)

By Lemma 4, we can identify L2(R2×T) = L2(R2)⊗ L2(T) and we can assume that
the element k in (98) is of the form k = g⊗h for g ∈ L2(R2) and h ∈ L2(T). Moreover
since the space of trigonometric polynomials is dense L2(T), we cal assume without
loss of generality that h = χn for some n ∈Z. Let u(ra) = χn(r )g (ra) for r ∈T and
a > 0, where χn(r (α)) = e i nα. Then u ∈ L2(R2). We shall use the fact thatS (R2) is
dense in L2(R2) to get an element v ∈S (R2) such tha t

‖u − v‖2 < ε. (99)

LetF ∗v = w be the inverse Fourier transform of v on R2. Then w ∈ S (R2) is a
rapidly decreasing function. Hence f = w ⊗χ−n is a rapidly decreasing function on
M (2), i.e. f ∈S (M (2)). This f satisfies (98). Since

k f
a (s , r ) = (Fw)(ra)χ−n(r s−1) = v(ra)χ−n(r )χn(s), (100)

21



we have







k − k f










2
=







g ⊗χn − k f










2

=




(χ−n u)⊗χn − (χ−n v)⊗χn






2

=




χ−n(u − v)






2‖χn‖2
= ‖u − v‖< ε. (101)

We can use the Plancherel theorem to decompose the regular representation into
irreducible representations and prove an analogue of the Peter-Weyl theorem for
M (2).

Proposition 18. Let π be a unitary representation of a topological group G on a sep-
arable Hilbert space H . Let B2 = B2(H ) be the Hilbert space of all Hilbert-Schmidt
operators on H and define a unitary representation of τ of G on B2 by setting

τ(g )(A) =π(g )A for A∈ B2 and g ∈G. (102)

Then τ can be decomposed as the direct sum of countable copies of π. More precisely, let
(φn) be an orthonormal basis of H , Pn be the projection onCφn and

Bn
2 = {A∈ B2 | APn =A}. (103)

Then we have
B2 =

∞
⊕

n=0
Bn

2 and τ
�

�

Bn
2

∼=π (104)

for all n ∈N.

Finally, we have:

Theorem 13. Let L be the left regular representation ofG =M (2). Then L is decomposed
as follows

L∼=
∫ ∞

0

⊕

τaada, (105)

where τa is the direct sum of countable copies of πa :

τa
∼=
⊕

n∈Z
πa for all a > 0. (106)

4 Application to the quantum free particle
We end with a short and relatively informal discussion on the application of the
representation theory of M (2) to the problem of a free particle in quantummechanics.
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At the beginning we saw a matrix representation of M (2)

M (2) =
¨

�

e iα z
0 1

�

�

�

�

�

�

for any α ∈R and z ∈C
«

. (107)

From here, we can see that the Lie algebra of M (2) is the real vector space spanned by

L=
�

i 0
0 0

�

, P1 =
�

0 1
0 0

�

, P2 =
�

0 i
0 0

�

, (108)

with Lie bracket relations

[L, P1] = P2, [L, P2] =−P1, [P1, P2] = 0. (109)

The so called Schrödinger representation πS provides a unitary Lie algebra representa-
tion on the space L2(R2). This is given by the operators

πS (P1) =−
∂

∂ x1
, πS (P2) =−

∂

∂ x2
, (110)

and
πS (L) =−
�

x1
∂

∂ x2
− x2

∂

∂ x1

�

. (111)

Hamiltonian operator for a free particle in two dimensions is

ÒH =− 1
2m

�

∂ 2

∂ x2
1

+
∂ 2

∂ x2
2

�

(112)

and solutions to the Schrödinger equation can be found as solutions to the eigenvalue
equation

ÒHψ(x1, x2) =−
1

2m

�

∂ 2

∂ x2
1

+
∂ 2

∂ x2
2

�

ψ(x1, x2) = Eψ(x1, x2). (113)

The operators πS (L), πS (P1) and πS (P2) commute with ÒH and provide a represen-
tation of the Lie algebra of M (2) on the eigenspace of ÒH with eigenvalue E . These
eigenspaces are infinite dimensional and are characterized by the non-negative eigen-
value E which has the physical interpretation of energy.

An element g (r (α), w) of M (2) acts on the space of solutionsψ(x) =ψ(x1, x2) by

g (r (α), w) ·ψ(x) =ψ(r (−α)(x −w)), (114)

which is very similar to the left translation of the functionψ. In fact, this representa-
tion is the same as the exponentiated version of the Schrödinger representation πS .
For a translation t (w) ∈M (2),

t (w) ·ψ(x) = ew1πS (P1)+w2πS (P2)ψ(x) =ψ(x −w), (115)
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and for a rotation r (α) ∈M (2),

r (α) ·ψ(x) = eπS (L)αψ(x) =ψ(r (−α)x). (116)

By passing over to the “momentum space”, these representations can be shown to be
equivalent to the principal series of representations described in Section 2.
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